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E372 Linear Algebra and Vector Calculus

(a)

(b)

Question one

Given the following system of linear equations as :
-10x, +5x, -8x, =41
7x—-3x,+6x;,=-28
6x,-3x,+ xy=-17

(1) solve them by Gauss elimination , (4 marks)
(i1)  solve them by Crammer’s rule . ( 4 marks)
Given the following system of first order differential equations as :

jd'z_]t('{l =9x,(t) -3 x,(1)

1%2 =4 x,(t) - 4 x,(t)

(i) Set x(H=X, " & x,()=X,e* and deduce the following matrix

X
equation A X =A4 X , where XZ(X]] : (4 marks)

2
(1))  Find the eigenvalues A . For each eigenvalue find its eigenvector.
(4 marks)

(iif) ~ Write down the general solutionsof x,(f) & x,{(t). (2 marks)
(iv)  If the following initial conditions are given as

x(0)=3 & x,(0)=-2 ,find the specific solutions of

) & x,(t) . Plotthese x(f) & x,(#) for t from 0 to 1l and

show them in a single display . (7 marks )



(a)

(b)

Question two

Given a scalar functionas  f(x,y,z)=x>z-5y’ +4xz* ,

(i)  find the valueof V f atthepoint (-1,-3,5), (3 marks )
df
dl

(i)  find the value of its directional derivative , i.e., , at the given point

(-1,-3,5) along the directionof [2,1,-3]. (4 marks )
Given a vector fieldas F =¢, (3 y? —12xz)+ €,6xy-¢ 6x*, findthe

valweof [ Fedl where B:(1,2,0) & P,:(7,10,0) andif

1) L : a straight line from Py to P, on z=0 plane, ( 6 marks )
(ii) L : asemi-circular path from P; to P; in counter clockwise sense
on z =0 plane.
Compare this answer with that obtained in (b)(i) and comment on the
conservative property of the given vector field.
(Hint : radius =5 & centered at (4, 6) , thus
x=4+5cos(t) & y=6+S5sin(r) where t isintegrated

from 7r+tan'1(g~] to 27r+tan’1(g)). ( 6 marks )

(ili) Find VxF .Does it agree with your comment in (b)(ii)? ( 3 marks )
(iv) If VxF=0 in(b)iii), then find the associated scalar potential of the

—

given F . (3 marks)



Question three

: o= - - 2
Givenavector fieldas F=¢ 2xz+€,5xy+e, y°,

(a)

(b)

©

find the value of IS Feds ifthesurface S isgivenas:

S: 4x*+3y*=4 , 1<z%55

(Hint:set x=cos(?) & y=2sin{t) where 0<t<2x) (10 marks)
utilize the Divergence theorem , i.e., cﬁs Feds= H IV (V . F)d v , and find
the value of cﬁ; Fed5 iftheclosed surface S is the cover surface of a

boxwith 0<x<1,0€y<2&0<2<3, (7 marks)
use the given F  to show that it satisfies the following vector identity :
Vx(VxF)=9VeF)-2, (v F)-2 (V' F,)-¢, (V*F,) . (8marks)



Question four

Given the following non-homogeneous differential equation as :
d*yy ., dy@)
-3 +2 y(t)y= f{f
1 ey () =10
where f (t) is a periodic function with its period =2 , i.e.,
fO=f+2)=fl+4)=ft+6)=-- , and its first period behaviour is given as
t if 0<t<l
flt)= . :
—t+2 if 1L5¢tL2 ,
(@ (i)  find the Fourier series representation of f(t} upto n=10 and name
this truncated series as  f}, (t) , (7 marks )
(i)  find the particular solution of y(t) corresponding to £, (t) replacing

f{t) in the given non-homogeneous differential equation , { 9 marks )
b @ find the general solution for the homogeneous part of the given
& y(t) 5 dy®)

dt’ dt

down the general solution for the given non-homogeneous differential

equation , (4 marks)
(ii))  find the specific solution to the given non-homogeneous differential

equation if the initial conditions are given as

differential equation , i.e., +2 (1) =0 , then write

wWo)=-5 & %yg’—) =2 . (5 marks)

1=0



Question five

A vibrating string of length L isfixedatitstwoends,ie, x=0 & x=L.Its

transverse displacement  u(x,f) satisfies the following one-dimensional wave equation

0% u(x,t) 1 3% u(x,0)
ox’ ¢ o

given string ,

(@)  set u(x,y)= F(x)G(y) and utilize the separation of variable scheme to break

the above partitial differential equation into two ordinary differential equations.
(4 marks )
(b)  The general solution of the above partitial differential equation can be written as

u(x: t) = Zuk (xat)
vk

= vzk(Ak cos(k x)+ B, sin{kx))(C, cos(ckt)+ D, sin(ckz))

=0 where c isaconstant related to the properties of the

where 4, ,B, .C, & D, are arbitrary constants.
@) Applying two fixed end conditions, i.e., #,(0,)=0 & u,(L,t)=0 and
Ou, (x,t)

=0 , show that the
ot

one zero initial speed condition , i.e.,

t=0
above general solution can be deduced to

u(x,t) =2En sin[nsz cos(anm) where E, (n=1,2,3,.....)
n=1

are arbitrary constants. ( 8 marks )
@) MY c¢=3, L=10 andthenitial position of

3x if 0<£x<2

the string is givenas  u(x,0)=4 6 if 2<x<7
-x+10 if 7<x<10
find the valuesof E,,E, ,E;, - » E¢ . Then plot this specific
polynomial solutions of t=0 , t=0.3 and t=0.6 all for the same
rangeof x=0 to 10 and show them in a single display.
(13 marks)




