UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING MAIN EXAMINATION DECEMBER 2010

TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING

COURSE CODE: EE251

TIME ALLOWED: THREE HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer all the seven questions.
- 2. Questions do not carry equal marks.
- 3. Show all your steps clearly in any calculations.
- 4. State clearly any assumptions made.
- 5. Start each question on a fresh page.

This paper has 6 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question no 1: (10 Marks)

Fig. Q.1a

Consider the fig. Q.1a . If the magnitude of Voltage across the inductor and across the capacitor are the same, explain which adjustments can be made in this circuit so as to obtain $\dot{}$

a) A small amount of current in the circuit.

[5 marks]

b) A high quality factor (Q).

[5 marks]

Question no 2: (15 Marks)

The University of Swaziland wishes to introduce an internal electrical Locomotive system to transport students whose Lecture rooms are far from the Campus' main entrance.

- a) Which D.C motor would you recommend to drive such a system? Give reasons for your recommendation [3Marks]
- b) Draw the circuit diagram for motor you recommended in (a).[2Marks]
- c) Derive the factor by which the speed of the motor in (a) changes, if the excitation current reaches only 50% of its full value? [5Marks]

If the same machine worked as a generator,

- d) Draw the circuit diagram [2 Marks]
- e) Derive the Mathematical expression for the E.M.F generated in the armature windings [3 Marks].

Question no 3: (20 Marks)

Find the Thévenin equivalent circuit for the network **outside the shaded area** of the bridge network in the following figure (Fig.Q.3b)

[17 Marks]

Hence or otherwise find the magnitude and direction current flowing in RL when RL= 7 Ω (3Marks)

Question no 4: (16 Marks)

- a) Draw a phasor diagram for a loaded single-phase transformer assuming that the transformer is having negligible voltage drop in windings. Define all the symbols used. [8 Marks]
- b) Explain each step used in the complete construction of the phasor diagram [8 Marks]

Question no 5: (20 Marks)

In this problem demonstrate the reciprocity theorem by solving part (a) and (b) as follows:

a) Calculate \mathbf{I}_{Y} in the single-source linear bilateral network in the following

figure, (Fig.Q.5c). [10Marks]

Also consider removing the source Vx and replacing it in the branch in which Iv flows, and verify the prediction of the reciprocity theorem. [10 Marks]

(Fig.Q.5c)

Question no 6: (9Marks)

A single-phase 50 Hz transformer has 80 turns on the primary winding and 400 turns on the secondary winding. The net cross-sectional area of the core is 200 cm². If the primary winding is connected to a 240V, 50 Hz supply; determine:

- a) E.M.F induced in the secondary [3Marks]
- b) The maximum value of the flux density in the core [4 Marks]
- c) Tell if the magnetic circuit of such a transformer is having high or low Retentivity, justify your answer. [2 Marks]

Question 7: (10Marks)

A coil of L = $5.00 \,\mu\text{H}$ and a capacitor of C= $200 \,\text{pF}$ are in series. The frequency is f= $4.00 \,\text{KHz}$. What is the net reactance vector jX? [10 Marks]

END OF PAPER