UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

PROGRAMMING TECHNIQUES I

COURSE CODE – EE271

MAIN EXAMINATION

DECEMBER 2011

DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. There are FIVE questions in this paper. Answer any FOUR questions only.
- 2. Each question carries equal marks.
- 3. Use correct notation and show all your steps clearly in any program analysis.
- 4. All programs should be well documented and indented.
- 5. Start each new question on a fresh page.

Question '	1
------------	---

a)

	uj											
		i.	Explain the	e rationale for using iterative control structures in (C [1]							
			programm	lig.	[1]							
		11.	Give three	examples of iterative control structures. For each	control							
			structure gi	iven as an example, explain its semantics.	[11]							
	b)	Expla	in the differe	ence between <i>semantic</i> and <i>syntactic</i> programming	errors							
	-)	and o	ive one exam	nle of each	[3]							
		and B	ive one eaun	pro or outin.	[-]							
c	c)) Explain the following terms as used in programming languages:										
		•	(i)	Machine Language	· •							
			Gi	Assembly Language								
			(iii)	High Level Language								
			(11)	Then Level Language								
	d)	Expla	in the follow	ing terms in the C programming language:	w							
		-	(i)	Variable	[4]							
			(-) (ii)	Variable Scone	[3]							
			(u)	variable beope	[]							

Question 2

Assume that reading is from the keyboard and output is displayed on the screen. Also assume that the following declarations have already been given.

```
struct product {
    char name[30];
    int price;
} inventory[5];
```

Write executable C statements with proper syntax (not a complete program), to perform each of the following tasks independently. Use only the declarations given above.

- (i) Enable the user to capture a list of five products and their values into an inventory list. [2]
- (ii) Display the matching range of each product according to the following criteria: If the price of the product is E10-E50 display "LOW COST"; if the value is greater that E50 but less than or equal to E150, display "MEDIUM COST"; if the value is greater than E150 but less than or equal to E400, display "HIGH COST"; otherwise display "UNKNOWN PRODUCT COST". [5]
- (iii) Display the most expensive product in the list.
- (iv) A function to sort the product inventory list in ascending order according to product prices. [8]

[5]

(v) Assuming a inventory list of 50 products, display all the products in the 'LOW COST' and 'HIGH COST' categories according to the criteria in (ii). [5]

Question 3

A company that wants to send data over the internet has requested you to write two C programs.

The *first* program encrypts the data so that it may be transmitted more securely and reduce the risk of unauthorised users reading it. All data is transmitted as *four-digit positive* integers. Your program should read a four-digit positive integer entered by the user, encrypt and print the number using the following *encryption scheme*:

Replace each digit with the result of adding 7 to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit with the third, and swap the second digit with the fourth.

The *second* program inputs an *encrypted* four-digit integer and *decrypts* it (by reversing the encryption scheme above) to recover the *original* integer.

Your programs will be graded according to the following criteria:

- i. *Correctness* does the program produce the desired result i.e. for a specified number of lines and printing direction, can the program produce the correct Pascal triangle.
- ii. *Clarity* proper indentation of program makes it easy to read.
- iii. Sensible naming of variables make it easy to understand code when debugging. [2]
- iv. Proper use of comments comments also make the program easy to understand. [2]

Question 4

(a) Using **only** *recursive* functions (no repetition statements), write a program that displays the following checkerboard pattern: [12]

*	*	*	*	*	*	*	*	*	*	*	*	ŧ	*	*	*	*	
ŧ	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	
*	*	*	*	ŧ	*	*				*	*	*	*	*	*·	*	
*	*	*	*	*	*						*	*	*	*	*	*	
*	*	*	*	*								*	*	*	*	*	
*	*	*	*										*	*	*	*	
*	*	*												*	*	*	
*	*														*	*	
*																*	
*	*														*	*	
*	*	*												*	*	*	
ŧ	*	*	*										*	*	*	*	
*	*	*	*	*								*	*	*	*	*	
*	*	*	*	*	*						*	*	*	*	*	*	
*	*	*	*	*	*	*				*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	

Your program must use **only** three output statements, one of each of the following forms:

<pre>printf("* ")</pre>	;
<pre>printf(" ");</pre>	
printf("\n")	;

(b) Analyse the following program and determine its output.

[13]

[20]

#include <stdio.h>

int main(void) {

-3-

```
int r = 1;
int s;
while (r <= 8) {
    printf("%s", r%2 ? "" : " ");
    for(s=1; s<=8; s++) {
        printf("* ");
        }
    printf("\n");
        r++;
    }
    return 0;
}
```

Question 5

÷

Carefully analyse the program shown in Figure 5 and determine its output. Show all working. [25]

```
#include <stdio.h>
#include <conio.h>
#include <math.h>
 /* Function prototypes */
void function1();
void function2();
void function3();
void function4();
/* Global variables */
int M[5][5] = \{0\};
int r;
int c;
int main (void){
        function1();
function2();
        function3();
        function4();
printf("Press any key to continue....\n");
while(!kbhit()) { }
}
void function1() {
    for(r=0; r<5; r++) {
        for(c=0; c<5; c++) {
            M[r][c] = 2*r*r + 3*r*c + 4*c*c;
            M[r][c]</pre>
        return 0;
}
void function2() {
        r=0;
        while(r < 5) {
                 for(c=0; c<5; c++) {
                        } else {
                                M[r][c] = pow(3, M[r][c] * 2);
                         }
                 }
r++;
        }
}
                        if(r>=c) {
                         printf("%d ", M[r][c]);
} else {
                                 printf(" ");
                         }
                ł
                printf("\n");
        }
        printf("%d ", M[r][c]);
} else {
                                printf(" ");
                         }
                 1
                printf("\n");
        }
}
```

Figure 5. Program for Question 5

-5-

END OF EXAM PAPER

-6-

.

.

. .