
UNIVERSITY OF SWAZILAND 


FACULTY OF SCIENCE 


DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING 


PROGRAMMING TECHNIQUES II 


COURSE CODE - EE272 


MAIN EXAMINATION 

MAY 2012 


DURATION OF THE EXAMINATION - 3 HOURS 


INSTRUCTIONS TO CANDIDATES 

1. 	 There are FIVE questions in this paper. Answer questions 1 & 2, and any 
other TWO questions. . 

2. 	 Each question carries equal marks. 

3. 	 Show all your steps clearly in any calculations. 

4. 	 State clearly any assumptions made. 

5. 	 Start each new question on a fresh page. 



Question 1 

a) 	 Explain how polymorphism promotes extensibility of software design? [4] 

b). A bank requires a software system for managing customers' bank accounts. All 
customers at this bank can deposit into and withdraw from their accounts. The 
bank has two types of accounts: savings and current. A savings account earns 
interest on the money held meanwhile a current account charges a fee per 
transaction. All accounts have methods for crediting, debiting, and retrieving 
account balances. Savings accounts keep information on interest rates and 
provide a way of computing interest earned. On the other hand current accounts 
keep information on the fee charged per transaction. Current accounts refine the 
general functionality of crediting and debiting all accounts so that whenever a 
transaction is performed successfully a transaction fee is deducted from the 
account balance. 

From the description of the proposed banking application problem above, give a 
detailed account ofwhy and how the programming techniques of inheritance and 
polymorphism could be especially effective for solving a problem of this nature. 

[21] 

Question 2 

a) 
(i) 	How is it that polymorphism enables programming "in the general" rather 

that "in the specific"? [1] 

(ii) Discuss two advantages ofprogramming "in the general". [3] 

b) 
(i) Discuss two problems of programming with the switch logic. [2] 

(ii) Using an example, explain how polymorphism can be an effective 
alternative to switch logic. [2] 

c) 	 Information hiding is one of the key features that distinguish object-oriented 
programming from structured programming. Using an example, explain the 
rationale of information hiding and how it relates to the following object-
oriented programming concepts: abstraction, coupling, and cohesion. [4] 

d) 	 Discuss the ways in which inheritance promotes software reuse, saves time 
during program development and helps prevent errors. [4] 

e) 	 Describe the ways by which a derived class may inherit from a base class. [5] 

f) 	 Using an example, explain the relationship between function templates and 
function overloading? [4] 

2 




Question 3 

Analyse the following programs and detennine their outputs. Show all working. 
(a) 
#include <iostream> 

using namespace stdi 
using namespace System; 

int main (void) { 
int i, j, c = 9, m, k; 
for (i = 1; i <= 5; i++) 

for (k = 1; k <- c; k++) { 
cout « " If; 

for (j 	= 1; j <= i; j++) { 

cout « j; 


for (m 	 = j - 2; m > 0; m--) { 

cout « m; 


cout « endl; 

c = c - 2; 


Console::ReadKey(); 

return 0; 


[9] 

(b) 
#include <iostream> 

using namespace std; 

int main () { 

char prnt = '* 1., 
int i, 	j, k, s, nos = -1; 

for (i = 5; i >= 1; i--) { 

for (j = 1; j <= i; j++) { 


cout « .. If; 


for (s 	= nos; s >= 1; s--) { 

cout « prnt; 


for (k 	= 1; k <= i; k++) { 

if (i == 5 && k == 5) 

continue; 

) 

cout « If "; 


nos nos + 2; 

cout « endl; 


nos 5; 

for (i = 2; i <= 5; i++) { 


for (j = 1; j <= i; j++) 

cout « prnt; 


for (s 	- nos; s >= 1; s--) { 

cout « If If; 


for (k = 1; k <= i; k++) { 

if (i == 5 && k == 5) 


break; 


3 



cout « prnt; 

nos .. nos - 2; 

cout « endl; 


} 


return 0; 

[16] 

Question 4 

Create a class HugeInteger that uses a 40-element array of digits to store integers as 
large as 40 digits each. Provide the following members functions for the class. 

(a) Input and Output member functions: 

(i) 	 Input: reads the digits of a Hugelnteger object. [3] 

(ii) 	 Output: writes out the digits ofa Hugelnteger object. [1] 

(b) Arithmetic member functions: 

(i) 	 Add: to calculate the sum oftwo HugeInteger objects. [5] 

(ii) 	 Subtract: to calculate the difference between two HugeInteger objects. 
[5] 

(c) Member functions for comparing HugeInteger objects: 
(i) 	 isEqualTo: returns TRUE if a HugeInteger object is greater than or 

equal to another HugeInteger object. Returns FALSE otherwise. [2] 

(ii) 	 isNotEqualTo: returns TRUE if a HugeInteger object is NOT equal to 
another HugeInteger object. Returns FALSE otherwise. [1] 

(iii) 	 isGreaterThan: returns TRUE if a HugeInteger object is greater than ! 

another HugeInteger object. Returns FALSE otherwise. [2] 

(iv) 	 isLessThan: returns TRUE if a HugeInteger object is less than another 
HugeInteger object. Returns FALSE otherwise. [2] 

(v) 	 isGreaterThanOrEqualTo: returns TRUE if a HugeInteger object is 
greater than or equal to another HugeInteger object. Returns FALSE 
otherwise. . [1] 

(vi) 	 isLessThanOrEqualTo: returns TRUE if a HugeInteger object is less 
than or equal to another HugeInteger object. Returns FALSE 
otherwise. [1] 

(vii) 	 isZero: returns TRUE if a HugeInteger is equal to O. Returns FALSE 
otherwise . [2] 

4 



Question 5 

Package-delivery services, such as FedEx, DHL, and UPS, offer a number of different 
shipping options, each with specific costs associated. 

Create an inheritance bierarchy in the form of a class diagram to represent the various 
types of packages. Use Package as the base class of the hierarchy, then include 
classes TwoDayPackage and Overnight that derive from Package. Base class 
Package should include data members representing the name, address, city, and 
region for both the sender and the recipient of the package, in addition to data 
members that store the weight (in kilograms) and cost per kilogram to ship the 
package. Package's constructor should initialise these data members. Ensure that 
the weight and cost per kilogram contain positive values. 

Package should provide a public member function calculateCost that returns a 
double indicating the cost associated with shipping· the package. Package's 
calculateCost function should determine the cost by multiplying the weight by 
the cost per kilogram. Derived class TwoDayPackage should inherit the 
functionality of base class Package, but also include a data member that represents a 
flat fee that the shipping company charges for two-day-delivery service. 
TwoDayPackage's constructor should receive a value to initialise this data member. 
TwoDayPackage should redefine member function calculateCost so that it 
computes the sbipping cost by adding the flat fee to the weight-based cost calculated 
by base class Package's calculateCost function. 

Class OverNightPackage should inherit directly from class Package and 
contain an additional data member representing an additional fee per kilogram 
charged for overnight-delivery service. OverNightPackage should redefine 
member function calculateCost so that it adds the additional fee per kilogram to 
the standard cost per kilogram before calculating the shipping cost. 

(i) Draw a class diagram depicting the three classes and their relationship. [3] 
(ii) Write the C++ interface ofeach class. [6] 
(iii) Write the C++ implementation of each class. [12] 
(iv) 	 Write a C++ program that creates objects of each type of package and tests 

their member function calculateCost. [4] 

END 	 OF PAPER 

5 



