UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE DEPARTMENT OF ELECTRICAL AND ELECTRONIC
 ENGINEERING
 MAIN EXAMINATION 2011

TITLE OF PAPER	$:$	ANALOG DESIGN - I
COURSE NUMBER	$:$	EE321
TIME ALLOWED		THREE HOURS
INSTRUCTIONS		READ EACH CAREFULLY
		ANSWER ANY FOUR QUESTIONS.
		EACH QUESTION CARRIES 25 MARKS
	MARKS FOR EACH SECTION ARE	
	SHOWN ON THE RIGHT-HAND MARGIN	

THIS PAPER HAS SIX PAGES INCLUDING THIS PAGE.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question No. 1

(a) Write short notes on:
i. Transistor Biasing
ii. Stability factor
(b) i) With the aid of a neat sketch describe voltage divider method of biasing.
ii) Derive the equations for collector current (I_{C}) and collector emitter voltage (V_{CE}).
iii) Explain how stabilization of operating point is achieved by this method? [13Marks]
(c) In voltage divider circuit, the operating point is chosen as $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=$ 3 V . If $\mathrm{R}_{\mathrm{C}}=2.2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}$ and $\beta=50$, determine the values of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{E}. Take $\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{I}}=10 \mathrm{I}_{\mathrm{B}}$.
[6Marks]

Question No. 2

(a) i) Draw the circuit of a practical single - stage common emitter transistor amplifier.
ii) Explain the function of each component.
[10Marks]
(b) i) With the aid of good sketches explain the small-signal model for the commonemitter configuration
ii) Use your model to derive expressions for the following amplifier parameters:

Input resistance R_{in},
Overall small-signal voltage gain G_{v},
Partial small-signal voltage gain A_{v},
Overall small -- signal current gain G_{i},
Short circuit small - signal current gain $\mathrm{A}_{\text {is, }}$ and
Output Resistance $\mathrm{R}_{\text {out }}$.
[15Marks]

Question No. 3

(a) Discuss the parallel tuned circuit with special reference to resonant frequency, circuit impedance and frequency response.
[13Marks]
(b) A parallel resonant circuit has a capacitor of 250 pF in one branch and inductance of 1.25 mH plus a resistance of 10Ω in the parallel branch. Find:
i. Resonant frequency
ii. Impedance of the circuit at resonance
iii. Q-factor of the circuit.
[6Marks]
(c) Discuss the operation of a single - tuned amplifier circuit.
[6Marks]

Question No. 4

a) i) What is an instrumentation amplifier?
ii) List three applications of Instrumentation amplifier.
(b) i) Draw a circuit of an Instrumentation amplifier which uses a Transducer Bridge.
ii) Derive the equation its output voltage as a function of the change in resistance of the transducer.
[12marks]
(c) An instrumentation amplifier using a Transducer Bridge Circuit has $R_{1}=1 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{F}}=4.7 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{C}}=100 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{dc}}=+5 \mathrm{~V}$ and op-amp supply of voltages $= \pm 15 \mathrm{~V}$.
The transducer is a thermistor with the following specifications:
$\mathrm{R}_{\mathrm{T}}=100 \mathrm{~K} \Omega$ at a reference temperature of $25^{\circ} \mathrm{C}$;
Temperature coefficient of resistance $=-1 \mathrm{~K} \Omega /^{\circ} \mathrm{C}$ or $\left(-1 \% /{ }^{\circ} \mathrm{C}\right)$.
Determine the output Voltage of the amplifier at $0^{\circ} \mathrm{C}$ and at $100^{\circ} \mathrm{C}$.
[7Marks]

Question No. 5

(a) i) Draw the Schematic diagram of a triangular wave generator which uses a comparator and an integrator.
ii) With the aid of relevant circuit waveforms, explain the operation of the circuit.
[10 Marks]
(b) Derive the equations for amplitude and frequency of the triangular wave generator, you discussed in (a).
[10Marks]
(c) In a triangular wave generator $\mathrm{R}_{2}=1.2 \mathrm{~K} \Omega, \mathrm{R}_{3}=6.8 \mathrm{~K} \Omega, \mathrm{R}_{1}=120 \mathrm{~K} \Omega$ and $C_{1}=0.01 \mu \mathrm{f}$ and supply voltage is $\pm 15 \mathrm{~V}$.
Determine:
i) The Peak-to-peak output Amplitude of the triangular wave.
ii) The Frequency of the triangular wave.

