UNIVERSITY OF SWAZILAND

 FACULTY OF SCIENCEDEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

MAIN EXAMINATION, DECEMBER 2011

TITLE OF PAPER: SIGNALS \& SYSTEMS I
COURSE CODE : EE331
TIME ALLOWED: THREE (3) HOURS
INSTRUCTIONS : ANSWER QUESTION 1 AND ANY OTHER THREE QUESTIONS
EACH QUESTION CARRIES 25 MARKS
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT
HAND MARGIN

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1

(a) With the help of the following signal, $x(t)$, discuss the three different types of transformations of the independent variable, t.

(b) From the definition of the average power of a periodic signal, (i) derive Parseval's theorem and (ii) explain its spectral interpretation.
(c) Discuss the two classifications of signals that have to do with the measure of the size of a signal. Give examples.
(d) With the help of an example, explain the sifting property of the unit impulse signal
(e) Discuss any two classifications or properties of systems, giving an example for each.
(f) What is the main idea behind Fourier series?
(g) Prove the linearity property of the Laplace Transform

QUESTION 2

(a)(i) Give and explain two possible sequences of operation by which the signal transformation $y(t)=x(2 t-6)$ can be realized from $x(t)$. (ii) Sketch and label $y(t)$ from the given $x(t)$ below. [8]

(b) For the waveform $y(t)$ shown below:

Determine the energy and the mean value.
(c)(i) Sketch the continuous-time signal $a(t)=A \times r e c t\left(\frac{t-t_{0}}{T}\right)$ and (ii) derive an expression for its energy.
(d) Sketch the even and odd components of the signal $x(t)=2 \operatorname{rect}\left(\frac{t}{3}-2\right)$ [4]
(e) Determine the fundamental period of the discrete-time signal $x[n]=\cos \left(\frac{\pi}{3} n\right)+\sin \left(\frac{\pi}{4} n\right)$.
(f) Show that the following two signals are orthogonal

$$
\begin{equation*}
\operatorname{rect}\left(\frac{t}{2}\right) \text { and } t \times \operatorname{rect}\left(\frac{t}{2}\right) \tag{3}
\end{equation*}
$$

QUESTION 3

(a) Derive the exponential Fourier series from the trigonometric Fourier series.
(b)(i) Find the Fourier coefficients and (ii) sketch the corresponding line spectra for the following signal $x(t)=1+\sin \omega_{0} t+2 \cos \omega_{0} t+\cos \left(2 \omega_{0} t+\pi / 4\right)$
(c) Obtain the trigonometric Fourier series of a periodic voltage signal defined by the following equation.

$$
x(t)=x(t+2)=\left\{\begin{array}{lr}
1, & -1 \leq t \leq 0 \tag{10}\\
2, & 0 \leq t \leq 1
\end{array}\right.
$$

QUESTION 4

(a) Show that the system described below is a time-varying-parameter system

$$
y(t)=(\sin t) x(t-2)
$$

(b) Determine the input-output relationship for the system shown below.

(c) Determine if the following systems are: (i) time-invariant, (ii) memoryless, (iii) Linear, or (iv) causal. Justify your answers.

1. $y(t)=\frac{x(t)}{2+x(t-5)}$
2. $y[n]=x[3-n]$
(d) Differentiate between a stable system and an unstable system, giving any suitable examples.
(e) Show that a system with the input $x(t)$ and output $y(t)$ related by the following equation is invertible.

$$
\begin{equation*}
y(t)=x(t+2) \tag{3}
\end{equation*}
$$

(f) Sketch a block diagram representation of the system defined by the following difference equation. [2] $y[n]+\frac{3}{5} y[n-1]=5 x[n]$

QUESTION 5

(a) Find the Laplace transform and the region of convergence (ROC) of the following signal, $x(t)$. Sketch

ROC.

$$
\begin{equation*}
\frac{-2}{5} e^{-3 t} u(-t) \tag{6}
\end{equation*}
$$

(b) Compute the impulse response of a system with the transfer function, $H(s)$, as given below. Assume the input $x(t)$ and output $y(t)$ are related by $y(s)=H(s) X(s)$

$$
\begin{equation*}
H(s)=\frac{2 s^{2}+5}{s^{2}+3 s+2} \tag{5}
\end{equation*}
$$

(c) Use Parseval's theorem to calculate the average power of the following signal.

$$
x(t)=7-10 \cos (40 \pi t-\pi / 3)+4 \sin (120 \pi)
$$

(d)(i) What is aliasing? A CD system has a sample rate of 44 KHz , (ii) what is the highest frequency that can be sampled by this system without aliasing?
(e) A causal digital processor with input response $h[n]$ is fed with input sequence $x[n]$, as given below. Determine the output $y[n]$.

$$
\begin{aligned}
& h[n]=[3,4,2,3] \\
& x[n]=2 \delta[n]+\delta[n-1]+3 \delta[n-2]+5 \delta[n-4]
\end{aligned}
$$

