UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE
 Department of Electrical and Electronic Engineering

SUPPLEMENTARY EXAMINATION JULY 2012

Title of Paper:
SIGNALS \& SYSTEMS I

Course Code: EE331
Time: THREE(3) Hours

Instructions:

1. Answer any FOUR questions.
2. Each question carries 25 Marks
3. Marks for different sections are shown in the right-hand margin.

QUESTION 1

(a) Sketch and give the mathematical expressions of the following signals:
(i) discrete-time unit sample
(ii) continuous-time unit step
(b) Sketch and label the even and odd components of the following signal.

(c) Differentiate between a causal system and a non-causal system.
(d) Express the following signal in terms of the unit step, $u[n]$

(e) Express the following signal in terms of its even and odd components.

$$
v(t)=\epsilon^{-a t} u(t)
$$

QUESTION 2

(a) Determine if the following system is: (i) time-invariant, (ii) Linear, (iii) Causal.

$$
\begin{equation*}
y[n]=x[1-n] \tag{8}
\end{equation*}
$$

(b) Determine if the following signal is periodic or not. If periodic, determine the fundamental period

$$
\begin{equation*}
x(t)=\sin 2 t+\sin \pi t \tag{4}
\end{equation*}
$$

(c) Sketch and label the signal $x(t)=-3 \operatorname{rect}(5 t-3)$
(d) Given the following discrete-time signal, $x[n]$, sketch $x[2 n]$

(e) Use the sifting property of the impulse delta function to simplify the following expression.

$$
\int_{-2}^{4}\left(3 t^{3}+4\right) \partial(t-2) d t
$$

(f) Is the following signal an energy signal or a power signal? Determine its energy or power

QUESTION 3

(a) Show that the following signals are aliased signals.

$$
a(t)=\cos \omega_{0} t \text { and } b(t)=\cos \left(\omega_{0}+\omega_{s}\right) t
$$

, where $\omega_{s}=2 \pi f_{s}$ is the sampling frequency in $\mathrm{rad} / \mathrm{s}$
[hint: $\cos (\alpha+2 n \pi)=\cos \alpha$]
(b) Determine the output of a Linear-Time-Invariant system defined by an impulse response of $\partial[n]-3 \partial[n-1]+2 \partial[n-3]$ when it is fed with a discrete-time input,

$$
\begin{equation*}
2 \partial[n]+\partial[n-1]+\frac{1}{2} \partial[n-2]-2 \partial[n-4] \tag{8}
\end{equation*}
$$

(c) Sketch the signal $x[n]=u[n+3]-u[n]+0.5^{n} u[n]$
(d) Sketch the following signal for three periods only.

$$
x(t)=\left\{\begin{array}{cc}
-t, & -2 \leq t<0 \tag{3}\\
t, & 0 \leq t<1
\end{array}, \text { Period, } T=3\right.
$$

(e) Give any five classifications that define the following signal.

QUESTION 4

(a) What is the fundamental frequency of the following harmonics; $42 \mathrm{~Hz}, 77 \mathrm{~Hz}$ and 105 Hz ?
(b) Determine the input-output relationship for the system shown below.

(c) Find the Laplace Transform $X(s)$ and the ROC of the following signal.

(d) Find the inverse Laplace transform of the following.

$$
\begin{equation*}
H(s)=\frac{s+17}{s^{2}+4 s-5} \tag{5}
\end{equation*}
$$

(e) Sketch a block diagram representation of the system defined by the following difference equation.(4) $y[n]+\frac{3}{5} y[n-1]=5 x[n]$
(f) Derive the trigonometric Fourier series from the exponential Fourier series.

QUESTION 5

(a) (i) Find the 0 Hz term and the first two trigonometric Fourier series coefficients of the following voltage signal.
(ii) Plot the single-sided line spectra.
(iii) What is the total power in these components?
(5)

b. Find the exponential Fourier representation of the following signal.

