UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE Department of Electrical and Electronic Engineering

SUPPLEMENTARY EXAMINATION JULY 2012

Title of Paper: SIGNALS & SYSTEMS I

Course Code: EE331 Time: THREE(3) Hours

Instructions:

- 1. Answer any FOUR questions.
- 2. Each question carries 25 Marks
- 3. Marks for different sections are shown in the right-hand margin.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(3)

(4)

QUESTION 1

(a) Sketch and give the mathematical expressions of the following signals:

- (i) discrete-time unit sample (4)
- (ii) continuous-time unit step (4)
- (b) Sketch and label the even and odd components of the following signal. (6)

(c) Differentiate between a causal system and a non-causal system. (4)

(d) Express the following signal in terms of the unit step, u[n]

(e) Express the following signal in terms of its even and odd components.

 $v(t) = e^{-at}u(t)$

QUESTION 2

(a) Determine if the following system is: (i) time-invariant, (ii) Linear, (iii) Causal. (8)

$$y[n] = x[1-n]$$

- (b) Determine if the following signal is periodic or not. If periodic, determine the
 - fundamental period

$$x(t) = \sin 2t + \sin \pi t \tag{4}$$

- (c) Sketch and label the signal x(t) = -3rect(5t 3) (4)
- (d) Given the following discrete-time signal, x[n], sketch x[2n]

(e) Use the sifting property of the impulse delta function to simplify the following expression. (2)

$$\int_{-2}^{4} (3t^{3} + 4) \partial(t - 2) dt$$

(f) Is the following signal an energy signal or a power signal? Determine its energy or power

(4)

(3)

(6)

(3)

(3)

(5)

QUESTION 3

(a) Show that the following signals are aliased signals.

$$a(t) = \cos \omega_o t$$
 and $b(t) = \cos(\omega_o + \omega_s)t$

, where $\omega_s=2\pi f_s$ is the sampling frequency in $rad/_{S}$

 $[hint: \cos(\alpha + 2n\pi) = \cos \alpha]$

(b) Determine the output of a Linear-Time-Invariant system defined by an impulse response of

$$\partial[n] - 3\partial[n-1] + 2\partial[n-3]$$
 when it is fed with a discrete-time input,

$$2\partial[n] + \partial[n-1] + \frac{1}{2}\partial[n-2] - 2\partial[n-4]$$
(8)

(c) Sketch the signal $x[n] = u[n+3] - u[n] + 0.5^n u[n]$

(d) Sketch the following signal for three periods only.

$$x(t) = \begin{cases} -t, & -2 \le t < 0 \\ t, & 0 \le t < 1 \end{cases}, \text{ Period, } T = 3$$

(e) Give any five classifications that define the following signal.

QUESTION 4

(a) What is the fundamental frequency of the following harmonics; 42 Hz, 77 Hz and 105 Hz?	(2)
(b) Determine the input-output relationship for the system shown below.	(5)

(c) Find the Laplace Transform X(s) and the ROC of the following signal. (4)

(d) Find the inverse Laplace transform of the following.

$$H(s) = \frac{s+17}{s^2+4s-5}$$

(e) Sketch a block diagram representation of the system defined by the following difference equation.(4)

$$y[n] + \frac{3}{5}y[n-1] = 5x[n]$$

(f) Derive the trigonometric Fourier series from the exponential Fourier series. (5)

(5)

QUESTION 5

. •

(a) (i) Find the 0 Hz term and the first two trigonometric Fourier series coefficients of the	
following voltage signal.	(10)
(ii) Plot the single-sided line spectra.	(5)
(iii) What is the total power in these components?	(5)

.

b. Find the exponential Fourier representation of the following signal.

(5)

