UNIVERSITY OF SWAZILAND MAIN EXAMINATION, FIRST SEMESTER DECEMBER 2011

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:ANALOGUE DESIGN IIICOURSE CODE:EE421

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question you may assume any reasonable values.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SIX (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

Consider the differential amplifier shown in Figure-Q1.

Figure-Q1

- (a) Find the differential input resistance. Assume $\beta = 100$. (3 marks)
- (b) Draw the differential half circuit. Hence calculate the voltage gains $\frac{V_{o2}}{V_d}$ and

$$\frac{V_{o2} - V_{o1}}{V_d}.$$
 (7 marks)

(c) Draw the common mode half circuit. Then calculate the common mode gain at the output V_{o2} and CMRR in dB. (7 marks)

(d) Estimate the high frequency 3dB bandwidth if $R_4 = R_3 = 0$.

$$C_{\pi} = 13 pF$$
 $C_{\mu} = 2 pF$ $r_o = \infty$ (8 marks)

QUESTION TWO (25 marks)

(a) For the circuit shown in Figure-Q2(a), the two transistors Q1 and Q2 are matched.

- (i) If the current gain of the transistors are β ,
 - 1.1 Find an expression for I_o with I_{ref} .
 - 1.2 Calculate the value of R to have an $I_o = 1mA$. Assume $\beta = 75$.

(5 marks)

(2 marks)

- (ii) What is the output resistance R_o ? Find the value of the output current I_o , if the output voltage V_o is 5V. Assume $V_A = 100V$. (9 marks)
- (b) Consider the current source shown in Figure-Q2(b). You may assume that the transistors are matched.

(i) Derive the percentage change of I_o with respect to I_{ref} . (6 marks)

(ii) Calculate the value of R_o . You may use any formula known to you.

$$I_{ref} = 100 \,\mu A$$
 $V_A = 120V$ $\beta = 100$ (3 marks)

(iii) State two advantages of this circuit.

Page 3 of 6

QUESTION THREE (25 marks)

(a) A circuit of an enhancement type NMOS amplifier is shown in Figure-Q3(a).

Figure-Q3(a)

For this amplifier, following process parameters are given.

$$W_1 = 100 \,\mu m$$
 $L_1 = 6 \,\mu m$ $W_2 = 1 \,\mu m$ $L_2 = 6 \,\mu m$ $V_t = 1 V$

(i) Obtain a relationship between V_o and V_{in} for dc voltages. Calculate V_o if

$$V_{in} = 1.5V$$
. (10 marks)

- (ii) Draw the small signal equivalent circuit. Hence derive an expression for the voltage gain and calculate its value. (8 marks)
- (b) For the CMOS amplifier shown in Figure-Q3(b),

$$K_n = K_p = 100 \mu A / V^2$$
 $V_{tn} = |V_{tp}| = 1V$ $V_{An} = V_{Ap} = 100V$ $I_{ref} = 100 \mu A$.

Find the small signal voltage gain.

(7 marks)

Figure-Q3(b)

QUESTION FOUR (25 marks)

Consider the cascode amplifier shown in Figure-Q4.

Figure-Q4

- (a) Assuming that the transistors are identical,
 - (i) Find an expression for the mid band voltage gain.
 - (ii) Calculate the mid band gain for the data given below.

 $R_S = 2k$ $R_1 = 5k$ $R_2 = 8k$ $R_3 = 1k$ $R_4 = 5k$ $R_L = 3k$ Vz = 5V $\beta = 100$ $I_{C2} = 1mA$ (13 marks)

(b) Find the values of the pole frequencies and hence determine the high frequency 3dB bandwidth.
(12 marks)

QUESTION FIVE (25 marks)

A dc regulator circuit is shown in Figure-Q5.

- (a) Find the range of the output voltage V_o . (6 marks)
- (b) Find an expression for the power dissipation in Q_2 in terms of the load current at a short circuit of the output.
- (c) Derive a relationship of the load current and the minimum load resistance that can be applied while maintaining the regulation.

(3 marks)

(4 marks)

(d) If the minimum collector current of Q_1 is I_{C1L} , find an expression for R_2 .

(6 marks)

- (e) Calculate the maximum load current value. Then find out,
 - (i) The maximum power dissipation in Q_2 .
 - (ii) The minimum load resistance.
 - (iii) The value of R_2 . Assume that the $\beta = 20$ for Q_2 and $I_{C1L} = 5mA$.

(6 marks)

1.

, `

SOME USEFUL MOSFET EQUATIONS

$$i_D = k_n \frac{W}{L} \left[(v_{GS} - V_i) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 in triode region

$$i_D = \frac{1}{2}k'_n \frac{W}{L}(v_{GS} - V_i)^2$$
 in saturation region

$$i_{D} = \frac{1}{2} k_{n} \frac{W}{L} (v_{GS} - V_{i})^{2} (1 + \lambda v_{DS})$$
 in saturation region with Channel
Modulation effect

-..

$$V_{A} = \frac{1}{\lambda}$$

2. Unless otherwise stated, $V_{BE(ON)} = 0.7V$ and $V_T = 0.025V$.