UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2012

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:	INTRODUCTION TO DIGITAL SIGNAL
	PROCESSING

COURSE CODE: EE443

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

.

- 1. Answer any <u>FOUR</u> (4) of the following five questions.
- 2. Each question carries 25 marks.
- 3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) A signal $x(t) = 5 \sin \omega t$ is digitized using 10 bits.

- (i) Calculate the magnitude of the amplitude quantization level. (3 marks)
- (ii) Calculate the signal-to-quantization-noise ratio (SQNR). (2 marks)
- (b) For CD quality music assume that SQNR = 6.02B 1.6 dB. It is required that the SQNR be at least 96 dB. What should be the minimum number of bits used in the digitization?

(3 marks)

- (c) A sinusoidal signal of frequency 2 kHz is passed through an 8th order Butterworth filter of cut-off frequency 5 kHz. It is then digitized using 10-bits. Find the minimum sampling frequency if the aliased signal amplitude at 2 kHz should not exceed the rms value of the quantization noise. (10 marks)
- (d) A digital communications link carries binary coded words representing samples of an input signal $x(t) = 3\cos 600\pi t + 2\cos 1800\pi t$ volts.
 - (i) Find the Nyquist sampling rate employed. (2 marks)
 - (ii) Find an expression for the discrete-time signal if the signal is sampled at 5 kHz.

(5 marks)

QUESTION TWO (25 marks)

- (a) A linear system with impulse response h[n] = [1, -2, -3, 4] has an input x[n] = [1, 1, 0, 1, 1]. Use the convolution to find its output sequence. (5 marks)
- (b) A system is described by the difference equation

$$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n) - \frac{1}{2}x(n-1)$$

Find a closed form expression for impulse response of the system. Hint: use the ztransform. (10 marks)

- (c) A system is described by $y(n) = \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n) + 3x(n-1) + 2x(n-2)$.
 - (i) Express its z-transform as a sum of partial fractions. (7marks)
 - (ii) Systems in the form of a sum of partial fractions can be realized as parallel subsystems where each partial fraction is regarded as a subsystem. Draw the realization of this system in parallel form. (3 marks)

<u>QUESTION THREE</u> (25 marks)

- (a) An IIR filter is described by y(n) = 0.7y(n-1) + x(n) - 2x(n-1). If the sampling frequency is 800 Hz, find
 - the magnitude, (i) (9 marks)
 - (ii) the phase, (2 marks)

of its frequency response at a frequency of 1200 rad/s.

maximally attenuated.

- (b) Obtain expressions for the magnitude and phase response of the FIR filter whose impulse response is given by h[n] = [0.25, 0.4, 0.8, 0.4, 0.25]. (8 marks)
- An FIR filter has a transfer function $H(z) = 1 + 0.765z^{-1} + z^{-2} = \frac{z^2 + 0.765z + 1}{z^2}$. (c)
 - (i) Sketch the pole-zero diagram of the filter. (2 marks) Given that the sampling rate is 8 kHz, determine the input frequency that will be (ii)

(4 marks)

QUESTION FOUR (25 marks)

(a) A signal is to be digitally filtered using an IIR filter based on an analogue second-order Butterworth filter with a normalized transfer function $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$.

Using the Bilinear Transformation, obtain the transfer function of the equivalent low pass digital filter, given a sampling rate of 120 Hz and a cut-off frequency of 20 Hz. Your calculations should be accurate to 4 decimal places. (15 marks)

(b) Obtain the DFT of the sequence x(n) = [1, -1, 2, 2]. (10 marks)

QUESTION FIVE (25 marks)

*

(i)

(a) Using the windowed sinc method with a Hamming window, determine the coefficients of a 7-tap linear-phase FIR low pass filter. The filter is to have a cut-off frequency of 3 kHz and sampling frequency of 16 kHz.

(b) A discrete-time system has the following pole-zero decription:

Zeros:	z = +j1.5 and $z = -j1.5$	
Poles:	z = 0.8, $z = 0.5 + j0.5$ and $z = 0.5 - j0.5$	
Is the system stable? Give a reason for your answer.		(2 marks)

(ii) Derive the difference equation of the system. (8 marks)

Discrete-time sequence $x(n), n \ge 0$	Z-transform H(z)
kð(n)	k
k	$\frac{kz}{z-1}$
ke ^{-αn}	$\frac{kz}{z-e^{-\alpha}}$
kα"	$\frac{kz}{z-\alpha}$
kn	$\frac{kz}{(z-1)^2}$
kn ²	$\frac{kz(z+1)}{(z-1)^3}$
kna"	$\frac{k\alpha z}{\left(z-\alpha\right)^2}$

TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

QUANTIZATION

.....

For a sine wave SQNR = 6.02B + 1.76 dB.

LOW PASS TO LOW PASS TRANSFORMATION

$$s = \frac{s}{\omega_p}$$
 where pre-warped frequency $\omega_p' = \tan\left(\frac{\pi f_c}{f_s}\right)$

.

. .

•

Page 8 of 8

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

Name of Widow	Normalized Transition Width	Passband Ripple (dB)	Main lobe relative to Sidelobe (dB)	Max. Stopband attenuation (dB)	6 dB normalized bandwidth (bins)	Window Function $\omega(n), n \le (N-1)/2$
Rectangular	0.9/N	0.7416	13	21	1.21	1
Hanning	3.1/N	0.0546	31	44	2.00	$0.5 + 0.5 \cos\left(\frac{2\pi n}{N}\right)$
Hamming	3.3/N	0.0194	41	53	1.81	$0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right)$
Blackman	5.5/N	0.0017	57	74	2.35	$0.42 + 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$
	2.93/N (β=4.54)	0.0274		50		$I_{o}\left(\beta\left\{1-\left[\frac{2n}{N-1}\right]^{2}\right\}^{\frac{1}{2}}\right)$
Kaiser	4.32/N (β=6.76	0.00275		70		$\frac{I_{o}\left[\begin{array}{c}p\\1\end{array}\right]^{1-\left\lfloor\frac{N-1}{N-1}\right\rfloor}\right]}{2}$
	5.71/N (β=8.96)	0.000275		90		$I_o(\beta)$

Bin width =
$$\frac{f_s}{N}$$
 Hz