UNIVERSITY OF SWAZILAND
MAIN EXAMINATION, SECOND SEMESTER MAY 2012

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

```
TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING
COURSE CODE: EE443
TIME ALLOWED: THREE HOURS
```

INSTRUCTIONS:

1. Answer any FOUR (4) of the following five questions.
2. Each question carries $\mathbf{2 5}$ marks.
3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

## THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

## QUESTION ONE (25 marks)

(a) A signal $x(t)=5 \sin \omega t$ is digitized using 10 bits.

| (i) Calculate the magnitude of the amplitude quantization level. | (3 marks) |
| :--- | :--- |
| (ii) Calculate the signal-to-quantization-noise ratio (SQNR). | ( 2 marks) |

(b) For CD quality music assume that $S Q N R=6.02 B-1.6 \mathrm{~dB}$. It is required that the SQNR be at least 96 dB . What should be the minimum number of bits used in the digitization?
(3 marks)
(c) A sinusoidal signal of frequency 2 kHz is passed through an $8^{\text {th }}$ order Butterworth filter of cut-off frequency 5 kHz . It is then digitized using 10 -bits. Find the minimum sampling frequency if the aliased signal amplitude at 2 kHz should not exceed the rms value of the quantization noise.
(d) A digital communications link carries binary coded words representing samples of an input signal $x(t)=3 \cos 600 \pi t+2 \cos 1800 \pi t$ volts.
(i) Find the Nyquist sampling rate employed.
(2 marks)
(ii) Find an expression for the discrete-time signal if the signal is sampled at 5 kHz .

## QUESTION TWO (25 marks)

(a) A linear system with impulse response $h[n]=[1,-2,-3,4]$ has an input $x[n]=[1,1,0,1,1]$. Use the convolution to find its output sequence.
(b) A system is described by the difference equation

$$
y(n)=\frac{5}{6} y(n-1)-\frac{1}{6} y(n-2)+x(n)-\frac{1}{2} x(n-1)
$$

Find a closed form expression for impulse response of the system. Hint: use the $z$ transform.
(10 marks)
(c) A system is described by $y(n)=\frac{1}{4} y(n-1)+\frac{1}{8} y(n-2)+x(n)+3 x(n-1)+2 x(n-2)$.
(i) Express its z-transform as a sum of partial fractions.
(7marks)
(ii) Systems in the form of a sum of partial fractions can be realized as parallel subsystems where each partial fraction is regarded as a subsystem. Draw the realization of this system in parallel form. (3 marks)

## QUESTION THREE (25 marks)

(a) An IIR filter is described by $y(n)=0.7 y(n-1)+x(n)-2 x(n-1)$. If the sampling frequency is 800 Hz , find
(i) the magnitude,
(9 marks)
(ii) the phase, (2 marks) of its frequency response at a frequency of $1200 \mathrm{rad} / \mathrm{s}$.
(b) Obtain expressions for the magnitude and phase response of the FIR filter whose impulse response is given by $h[n]=[0.25,0.4,0.8,0.4,0.25]$.
(c) An FIR filter has a transfer function $H(z)=1+0.765 z^{-1}+z^{-2}=\frac{z^{2}+0.765 z+1}{z^{2}}$.
(i) Sketch the pole-zero diagram of the filter.
(2 marks)
(ii) Given that the sampling rate is 8 kHz , determine the input frequency that will be maximally attenuated.
(4 marks)

## QUESTION FOUR (25 marks)

(a) A signal is to be digitally filtered using an IIR filter based on an analogue second-order Butterworth filter with a normalized transfer function $H(s)=\frac{1}{s^{2}+\sqrt{2} s+1}$.

Using the Bilinear Transformation, obtain the transfer function of the equivalent low pass digital filter, given a sampling rate of 120 Hz and a cut-off frequency of 20 Hz . Your calculations should be accurate to 4 decimal places.
(b) Obtain the DFT of the sequence $x(n)=[1,-1,2,2]$. (10 marks)

## QUESTION FIVE (25 marks)

(a) Using the windowed sinc method with a Hamming window, determine the coefficients of a 7-tap linear-phase FIR low pass filter. The filter is to have a cut-off frequency of 3 kHz and sampling frequency of 16 kHz .
(b) A discrete-time system has the following pole-zero decription:

Zeros: $\quad z=+j 1.5$ and $z=-j 1.5$
Poles: $\quad z=0.8, z=0.5+j 0.5$ and $z=0.5-j 0.5$
(i) Is the system stable? Give a reason for your answer. (2 marks)
(ii) Derive the difference equation of the system. (8 marks)

## TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

| Discrete-time sequence <br> $x(n), n \geq 0$ | Z-transform <br> $H(z)$ |
| :---: | :---: |
| $k \delta(n)$ | $\frac{k z}{z-1}$ |
| $k$ | $\frac{k z}{z-e^{-\alpha}}$ |
| $k e^{-\alpha n}$ | $\frac{k z}{z-\alpha}$ |
| $k \alpha^{n}$ | $\frac{k z}{(z-1)^{2}}$ |
| $k n$ | $\frac{k z(z+1)}{(z-1)^{3}}$ |
| $k n^{2}$ | $\frac{k \alpha z}{(z-\alpha)^{2}}$ |
| $k n \alpha^{n}$ |  |

## QUANTIZATION

For a sine wave $S Q N R=6.02 B+1.76 \mathrm{~dB}$.

LOW PASS TO LOW PASS TRANSFORMATION
$s=\frac{s}{\omega_{p}^{\prime}}$ where pre-warped frequency $\omega_{p}^{\prime}=\tan \left(\frac{\pi f_{c}}{f_{s}}\right)$

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

| Name of <br> Widow | Normalized <br> Transition <br> Width | Passband <br> Ripple (dB) | Main lobe <br> relative to <br> Sidelobe (dB) | Max. <br> Stopband <br> attenuation <br> (dB) | 6 dB <br> normalized <br> bandwidth <br> (bins) | Window Function <br> o(n), $\|\mathbf{n}\| \leq(\mathbf{N}-\mathbf{1}) / 2$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Rectangular | $0.9 / \mathrm{N}$ | 0.7416 | 13 | 21 | 1.21 | 1.00 |
| Hanning | $3.1 / \mathrm{N}$ | 0.0546 | 31 | 44 | 1.81 | $0.5+0.5 \cos \left(\frac{2 \pi n}{N}\right)$ |

