UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, JULY 2012

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

٦

TITLE OF PAPER:	INTRODUCTION TO DIGITAL SIGNAL PROCESSING
COURSE CODE:	EE443
TIME ALLOWED:	THREE HOURS
	· · · · · · · · · · · · · · · · · · ·

INSTRUCTIONS:

- 1. Answer any <u>FOUR</u> (4) of the following five questions.
- 2. Each question carries 25 marks.
- 3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

<u>OUESTION ONE</u> (25 marks)

(a) A signal $x(t) = 6 \sin \omega t$ volts is digitized using 12 bits.

- (i) Calculate the magnitude of the amplitude quantization interval. (3 marks)
- (ii) Calculate the signal-to-quantization-noise ratio (SQNR). (2 marks)
- (b) A system is described by the difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n-1)$$

Use the Z-Transform and its inverse to find the impulse response of the system. (10 marks)

- (c) A system has an impulse response h(n) = [0, -1, 2, 1, 0]. A discrete signal x(n) = [3, 2, -1] is passed through the system. Find the output sequence. (5 marks)
- (d) A system has a transfer function $H(z) = z^{-1} + 2z^{-2}$. A sequence whose Z-Transform is $X(z) = 1 + 2z^{-1} + z^{-2}$ is passed through the system. Find the output sequence. (5 marks)

QUESTION TWO (25 marks)

- (a) For the system described by y(n) = x(n) + 3x(n-2) + 0.6y(n-1)
 - (i) Find the poles and zeros. (4 marks)
 - (ii) Determine whether the system is stable or not. (1 mark)

(b) For the system with impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n-1) + 3^n u(n)$

- (i) Find the poles and zeros. (7 marks)
- (ii) Determine whether the system is stable or not. (1 mark)

(c) A discrete-time system has a transfer function $H(z) = \frac{z}{z+0.8}$.

- (i) What is the Region of Convergence of this function? (2 marks)
- (ii) Obtain expressions for the magnitude and phase of its frequency response. (6 marks)
- (iii) Evaluate its magnitude and phase at $\frac{1}{3}$ of its sampling frequency. (4 marks)

<u>QUESTION THREE</u> (25 marks)

- (a) Find the DFT of the sequence [2, 1, 2, -1].
- (b) A 1st order analogue low pass filter has a normalized transfer function $H(s) = \frac{1}{s+1}$.
 - (i) Given a sampling rate of 12 kHz and a cut off frequency of 2.5 kHz, use the Bilinear transform, obtain the transfer function of the equivalent low pass digital filter. (13 marks)
 - (ii) Draw a realization structure of the equivalent digital filter. (2 marks)

(10 marks)

EE443 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

QUESTION FOUR (25 marks)

- (a) (i) Find simplified expressions for the magnitude and phase response of the FIR filter whose impulse response is given by h[n] = [-0.4, 0.6, 0.8, 0.6, -0.4]. (8 marks)
 - (ii) How would you describe this FIR filter? (1 mark)

(b) An IIR filter has a transfer function
$$H(z) = \frac{z^2 + 1}{z^2 + 0.64}$$
.

- (i) Sketch the pole-zero diagram of the filter. (2 marks)
- (ii) Given that the sampling rate is 16 kHz, determine the input frequency that will be maximally attenuated.
 (4 marks)
- (c) A discrete system has a transfer function $H(z) = \frac{k(z+1)}{(z-0.6)}$.
 - (i) Write down an expression for its frequency response. (2 marks)
 - (ii) Obtain a simplified expression for its frequency response at $\frac{1}{4}$ of the sampling frequency. (4 marks)
 - (iii) Determine the value of k if the magnitude of the transfer function at $\frac{1}{4}$ of the sampling frequency is 2. (4 marks)

<u>QUESTION FIVE</u> (25 marks)

- (a) Using the windowed sinc method with a Hanning window, determine the coefficients of a 9-tap (N = 9) linear-phase FIR low pass filter. The filter is to have a cut-off frequency of 5 kHz and sampling frequency of 16 kHz. (20 marks)
- (b) A discrete-time system has the following frequency response

$$H(e^{j\Omega}) = \frac{1 - \frac{1}{2}e^{-j\Omega} + e^{-j3\Omega}}{1 + \frac{1}{2}e^{-j\Omega} + \frac{3}{4}e^{-j2\Omega}}$$

Derive the difference equation of the system.

(5 marks)

Discrete-time sequence $x(n), n \ge 0$	Z-transform H(z)		
kδ(n)	k		
k	$\frac{kz}{z-1}$		
$ke^{-\alpha n}$	$\frac{kz}{z-e^{-\alpha}}$		
kα"	$\frac{kz}{z-\alpha}$		
kn	$\frac{kz}{\left(z-1\right)^2}$		
kn ²	$\frac{kz(z+1)}{(z-1)^3}$		
kna"	$\frac{k\alpha z}{(z-\alpha)^2}$		

TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

QUANTIZATION

For a sine wave SQNR = 6.02B + 1.76 dB.

LOW PASS TO LOW PASS TRANSFORMATION

$$s = \frac{s}{\omega_p}$$
 where pre-warped frequency $\omega_p = \tan\left(\frac{\pi f_c}{f_s}\right)$

Page 8 of 8

.

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

Name of Widow	Normalized Transition Width	Passband Ripple (dB)	Main lobe relative to Sidelobe (dB)	Max. Stopband attenuation (dB)	6 dB normalized bandwidth (bins)	Window Function $\omega(n), n \le (N-1)/2$
Rectangular	0.9/N	0.7416	13	21	1.21	1
Hanning	3.1/N	0.0546	31	44	2.00	$0.5 + 0.5 \cos\left(\frac{2\pi n}{N}\right)$
Hamming	3.3/N	0.0194	41	53	1.81	$0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right)$
Blackman	5.5/N	0.0017	57	74	2.35	$0.42 + 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$
	2.93/N (β=4.54)	0.0274		50		$\left(\begin{array}{c} \left[2n \right]^2 \right]^{\frac{1}{2}} \right)$
Kaiser	4.32/N (β=6.76	0.00275		70		$\frac{I_{o}\left(p\left[1-\left\lfloor \overline{N-1}\right\rfloor\right]\right)}{2}$
	5.71/N (β=8.96)	0.000275		90		$I_o(\beta)$

Bin width =
$$\frac{f_s}{N}$$
 Hz