# **UNIVERSITY OF SWAZILAND**

### **FACULTY OF SCIENCE & ENGINEERING**

### DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

### SUPPLEMENTARY EXAMINATION

**JULY 2013** 

PROGRAMMING TECHNIQUES I

**COURSE CODE – EE271** 

**DURATION - 3 HOURS** 

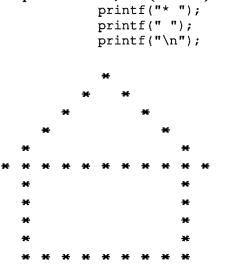
#### **INSTRUCTIONS TO CANDIDATES**

- 1. There are FIVE questions in this paper. Answer any FOUR questions only.
- 2. Each question carries equal marks.
- 3. Use correct notation and show all your steps clearly in any program analysis.
- 4. All programs should be well documented and indented for clarity.
- 5. Start each new question on a fresh page.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

## **Question 1**

۰


.

| a)                                                                                                                                                                                                                                                                           | Explain the differences and relationships between a <i>Psuedocode</i> , an <i>Algor</i> and a <i>Program</i> .                                                                                                         | ithm<br>[6] |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| b)                                                                                                                                                                                                                                                                           | Explain the difference between the break and continue statements.                                                                                                                                                      | [4]         |
| c)                                                                                                                                                                                                                                                                           | Give three examples of iterative control structures. For each control struct given as an example, explain its semantics.                                                                                               | ure<br>[10] |
| d)                                                                                                                                                                                                                                                                           | Compare and contrast the concepts of <i>recursion</i> and <i>iteration</i> .                                                                                                                                           | [5]         |
| Ques                                                                                                                                                                                                                                                                         | tion 2                                                                                                                                                                                                                 |             |
| Answer each of the following. Assume that single-precision floating point numbers are stored in 4 bytes, and that the starting address of the array is at location 1002500 in memory. Each part of this question should use the results of previous parts where appropriate. |                                                                                                                                                                                                                        |             |
| a.                                                                                                                                                                                                                                                                           | Define an array of type float called <i>numbers</i> with 10 elements, and initiali the elements to the values 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9. Ass the symbolic constant SIZE has been defined as 10. |             |
| b.                                                                                                                                                                                                                                                                           | Define a pointer, <i>nPtr</i> , that points to an object of type float.                                                                                                                                                | [1]         |
| c.                                                                                                                                                                                                                                                                           | Print the elements of array numbers. Print each number with 1 position of precision to the right of the decimal point.                                                                                                 | [4]         |
| d.                                                                                                                                                                                                                                                                           | Give two separate statements that assign the starting address of array $num$ to the pointer variable $nPtr$ .                                                                                                          | bers<br>[3] |
| e.                                                                                                                                                                                                                                                                           | Print the elements of array numbers using pointer/offset notation with the pointer nPtr.                                                                                                                               | [5]         |
| f.                                                                                                                                                                                                                                                                           | Assuming that <i>nPtr</i> points to the beginning of array numbers, what addres referenced by $nPtr + 8$ ? What value is stored at that location?                                                                      | s is<br>[3] |
|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                        |             |

g. Assumming that nPtr points to numbers[5], what address is referenced by nPtr-=4. What is the value stored at that location. [7]

### **Question 3**

Using **only** *recursive* functions (NO repetition statements), write a program that displays the following checkerboard pattern. Your program must use **only** three output statements, one (or more) of each of the following forms:



[25]

### **Question 4**

}

Carefully analyse the program shown below and determine its output. Show all working. [25]

```
#include <stdio.h>
void x(int,int,int);
void y(int, int, int);
int main(void) {
       int n=1;
       int m=1;
       int max=10;
       x(n,m,max);
       return(0);
}
void x(int n, int m, int max) {
       y(n,m,max);
       printf("\n");
       if(n<max) {</pre>
              n++;
              x(n,m,max);
       }
}
void y(int a, int b, int c) {
       if((a*b < c-5)||(a*b>c*5)||((a*b%3==0)&&(a*b<c*3))) {
              printf("* ");
       } else {
              ((a/b)%2==1)? printf("0 "):printf("1 ");
       1
       if(b < c) {
              b++;
              y(a,b,c);
       }
```

#### **Question 5**

A company that wants to send data over the internet has requested you to write *two* C programs.

The *first* program encrypts the data so that it may be transmitted more securely and reduce the risk of unauthorised users reading it. All data is transmitted as *four-digit positive* integers. Your program should read a four-digit positive integer entered by the user, encrypt and print the number using the following *encryption scheme*:

Replace each digit with the result of adding 7 to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit with the third, and swap the second digit with the fourth.

The *second* program inputs an *encrypted* four-digit integer and *decrypts* it (by reversing the encryption scheme above) to recover the *original* integer.

Your programs will be graded according to the following criteria:

i. *Correctness* – does the program produce the desired result i.e. for a specified number of lines and printing direction, can the program produce the correct Pascal triangle.

[20]

- ii. *Clarity* proper indentation of program makes it easy to read. [1]
- iii. Sensible naming of variables make it easy to understand code when debugging. [2]
- iv. Proper use of comments comments also make the program easy to understand. [2]

# END OF EXAM PAPER