
UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION

JULY 2013

PROGRAMMING TECHNIQUES II

COURSE CODE - EE272

DURATION - 3 HOURS

•

INSTRUCTIONS TO CANDIDATES

(a}There are FIVE questions in this paper. Answer questions 1 & 2, and any other
TWO questions.

(b) Each question carries equal marks.

(c) Show all your steps clearly in any calculations.

(d) State clearly any assumptions made.

(e) Start each new question on a fresh page.

Question 1

(a) What is polymorphism? [4]

(b) What is inheritance? [2]

(c) How does polymorphism support inheritance? [3]

(d) How is overriding related to polymorphism? [4]

(e) Discuss how polymorphism makes software systems extensible and maintainable?
[5]

(f) What is the difference between an object and a class? [3]

(g) What are constructors and how are they defined? [4]

Question 2

(a) Using an example, explain where you would use a unary scope resolution
operator. [2]

(b) In object-oriented programming it is recommended that we should separate
interface from implementation. Explain the reason for this. [3]

(c) Explain the difference between the use of the dot selection operator(.) and the
arrow member selection operator (-». [3]

(d) What is a friend function ofa class? [2]

(e) What is a static class member? [4]

(f) Why is it that static class members do not have the this pointer? [2]

(g) Discuss four restrictions on operator overloading in c++? [4]

(h) Explain the following object-oriented terms: abstract class, base class, and a
derived class. [5]

2

Question 3

Analyse the following THREE programs and detennine their outputs.

(a) Program 1 [3]

Class Interface

#pragrna once

class DemoProg1
public:

DemoProg1 (void) ;
-DemoProg1(void)i

} ;

Class Implementation

#include "DemoProg1.h"

#include <iostream>

using namespace stdi

DemoProg1::DemoProg1(void){
int k, num=30;
k (num>5? (num <=10 ? 100 200): 500);
cout « num « endli

DemoProg1::-DemoProg1(void){
}

int main(void) {

DemoProg1 dp1;

return(O);

(b) Program 2 [12]

Class Interface

#pragma once

class DemoProg2
public:

DemoProg2(void);
-DemoProg2(void)i

} ;

Class Implementation

#include "DemoProg2.h"

#include <iostream>

using namespace std;

DemoProg2::DemoProg2(void){

char c=48;

3

int i, mask=Ol,value;

for(i=l; i<=4: i++) {
value = clmask;
cout « value « endl;
mask mask«l:

DemoProg2::-DemoProg2(void){

}

int main (void) {

DemoProg2 dp2;

return(O):

(c) Program 3 [10]

Class Interface

#pragma once

class DemoProg3
public:

DemoProg3(void);
-DemoProg3(void):

} i

Class Implementation

#include "DemoProg3.h"

#include <iostream>

using namespace std;

DemoProg3::DemoProg3(void){
int i=4, j=8, valuel, value2, value3;
valuel ilj&jli;
value2 = (i«l}&jlj&i;
value3 = iAj;
cout « valuel « ", " « value2 «" fI« value3;
cout « endli

DemoProg3::-DemoProg3(void){

}

int main(void) {

DemoProg3 dp3;

return(O);

}

Question 4

A college administrator requires a program that reads in test scores and applies two
different curves to them. The program should contain a base class ScoreBank with
two private data members: an integer array for the scores and a float for the average.
The maximum number of scores is 10. The class should contain a method EnterScores

4

which asks the user how many test scores are needed and reads in the scores. The
class should also contain a method CalcAverage which stores the average of the
entered scores in the private float data member. Scorebank should also have an Output
function that prints a sorted list of test scores to the screen as well as the average.

Derive from ScoreBank a class called Curve} which contains a method Curve. This
curve sets the average score to 75, fmds out how far away from 75 the actual average
is, and then add this value to each test score. Overload the Output method to print,
sorted, the original scores and the curved scores as well as the original and new
average.

Derive from ScoreBank a class called Curve2 which contains a method Curve. This
curve sets the highest score to 100. The method then finds out how is the highest
score from 100 and then adds the difference to each score. Overload the Output
function to print the original scores, the new scores, and the averages for both sets.

(i) Write the interfaces of each of the three classes. [6]

(ii) Write the implementations of the classes. [19]

Question 5

Create a class HugeInteger that uses a 40-element array of digits to store integers as
large as 40 digits each. Provide the following members functions for the class.

(a) Input and Output member functions:

(i) 	 Input: reads the digits ofa HugeInteger object. [3]

(ii) 	 Output: writes out the digits of a HugeInteger object. [1]

(b) Arithmetic member functions:

(i) 	 Add: to calculate the sum of two Hugelnteger objects. [5]

(ii) 	 Subtract: to calculate the difference between two HugeInteger objects.
[5]

(c) Member functions for comparing HugeInteger objects:
(i) 	 isEqualTo: returns TRUE if a HugeInteger object is greater than or

equal to another HugeInteger object. Returns FALSE otherwise. [2]

(ii) 	 isNotEqualTo: returns TRUE if a HugeInteger object is NOT equal to
another HugeInteger object. Returns FALSE otherwise. [1]

(iii) 	 isGreaterThan: returns TRUE if a HugeInteger object is greater than
another HugeInteger object. Returns FALSE otherwise. [2]

(iv) 	 isLessThan: returns TRUE if a HugeInteger object is less than another
HugeInteger object. Returns FALSE otherwise. [2]

5

(v) 	 isGreaterThanOrEqualTo: returns TRUE if a Hugelnteger object is
greater than or equal to another Hugelnteger object. Returns FALSE
otherwise. [1]

(vi) 	 isLessThanOrEqualTo: returns TRUE if a Hugelnteger object is less
than or equal to another Hugelnteger object. Returns FALSE
otherwise. [1]

(vii) 	 isZero: returns TRUE if a Hugelnteger is equal to O. Returns FALSE
otherwise. [2]

END OF PAPER

6

