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Question 1 

a) From the given signal x(t) as shown below, plot X(1- ~) [3] 

• 

----~--~~------~--~t-1 0 1 2 . 

b) Compute the impulse response, h(t) of a system with the transfer function, H(s), as 

given below. Assume the input x(t) and output yet) are related by Yes) =H(s)X(s). 

[10] 

H(s) = (s+4)
S(S2 +5s+6) 

c) Find the fundamental period (in seconds) ofthe sum signal: [3] 

d) For x[n]=o[n]+2o[n-l]-o[n-3] and h[n] =28[n+1]+28[n-1], compute 

y[n] = x[n] *h[n] . [3] 

e) Using the graphical method, compute, yet) =x(t)*h(t) for x(t) =u(t-3)-u(t-5) and 

h(t) = e-3tu(t) , [6] 
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Question2 

a) 	 Determine whether the following DT (discrete-time) signal is periodic or not? If periodic, 
determine fundamental period: [3] 

21fn] [21fn]cos 	-5- +cos -7[ 

b) 	 Derive the differential equation in terms of x(t) and y(t) that relates all the circuit 
components in the circuit below: [10] 

L R,. 

+ 

x(t) =~(t) yet) = VRz (t) 

c) State ifthe following systems are linear/non-linear, causal/non-causal, time-invariant! 
time-varying: 

i) y[n] = n 2x[n+ 2] [3] 
ii) y(t) =A cos (21fft +x(t)) [3] 

d) State the sifting property of the unit impUlse, 8(t) [1] 

co 

e) Solve Jx(t)8(t - 4)dt [1] 
-«> 

f) For the following signal find an expression for its second derivative: [2] 

x(t) =2r(t) - 3r(t -1) - 4r(t - 3) 

g) Determine the overall impulse response of the following LTI system: [2] 

I----+y(t)x(t) 1....-.._---1 
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Question 3 

a) 	 Find and sketch the region ofconvergence (ROC) of the following signal: [4] 

Zl{t) 

tzt 
o 

b) 	 Describe briefly in words each of the following signal operations: 

i) X(~+l) [2] 

ii) x(-t+ 2) [2] 

c) 	 Determine the system response of the following system: 

5 dy(t) +IOy(t) = 2x(t) 
dt 

for the input x(t) = 2u(t) , assume zero initial conditions. [10] 

d) Draw a block diagram representation for the causal LTI system described by the 
following difference equation: 

1
y[n] =- y[n-l]+x[n-l]

3 
[3] 

e) 	 Differentiate between an invertible and a noninvertible system, give suitable examples for 
each. Do not consider any of the systems defined in this exam as your examples. 

[4] 
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Question 4 

a) Given the following differential equation, find y(t): 	 [5] 

2 
d	 y(t) +3 dy(t) +2y(t) = oCt) 

dt dt 

b) The following signal: 

has these three basis functions, 

and the corresponding energies are: 

Eo = 2, El 
2 
-,
3 

2
E2 (t) =  . 
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Find the approximate value of x(t) using the minimum square error method. [10] 

c) Find the Laplace transforms of the following signals: 

i) 

ii) 

f (t) = sin [ Wo (t  1:)]u(t - 1:) [2] 

1 
 ...._--.

1 t ......... 


[3] 

d) 
i) Write a mathematical expression for the Signum function, sgn(t). [3] 

ii) Write the Signum function in terms of the step function. [2] 
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Question 5 

a) Find the Fourier series coefficients of the signal: 	 [5] 

b) 	 Detenmne whether the following signals are energy signals or power signals and 
calculate their energy or power. 

i) 	 x[n] = (~J u[n] [3] 

ii) 

x(t) 

1 

------~------------~----------~--~---+t
-5 -4 o 4 5 

[5] 

c) Find the even and odd components of the following: [4] 

x(t) =cos
2 

( ~ ) 

d) Is the following pair of signals orthogonal over the interval (0,4)? Prove your answer. 
[4] 
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u(t) 

1.5 

1 

05 

o t 
4 52 

• -0.5 

-1 

-1..5 

vet) 
15 

1 

05 

0 

-0.5 


-1 


-1.5 

e) State Parseval' s theorem. [2] 

f) For the time function: 

t 
1 3 .) 

t 

f(t): Jrsin(2{t-r))dr, t~O 
o 

Use the Initial Value Theorem to find f(O). [2] 
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Table of Laplace Transfonns 

delta function 8(t) ~ 	1 
e-o.&shifted delta function o(t- a) ~ 

unit step u(t) ~ 1 
s 

ramp 	 tu(t) ~ 1 
Sf 
2parabola Ru(t) ~ :;x

n--th power t1& ~ n! 
It 	 -;n:Fl 

exponential decay e-nt 4=> 1 
8+a 

two-sided exponential decq e-I1I £1 4=> 20. 
r;r=;;r 

te-a.t 

{l- tIt)e-a.t 

4=> 
4=> 

1 
(.s+o.rA 

B 

(.s+a.)2 

exponential approach 1 e-at 4=> a 
8(S+o.) 

sine sin (wt) 4=> w 
s2+w\1l 

cosine 

hyperbolic sine 

hyperbolic cosine 

cos (wt) 

sinh (wt) 

cosh (wt) 

4=> 
4=> 
4=> 

s 
8 2 +",,2 

"" sr=IJI 
8 

~ 

exponentially decaying sine 

exponentially decaying cosine 

e-o.t sin (wt) 

e-o.t cos (wt) <=:&. 
w 

(.s+a,P+w2 
s+a 

(s+a)2+w~ 

frequency differentiation tf(t) 4=> 	 -F'(a) 
c.

frequency n--th differentiation tnf{t) -<===> (_l)npCn)(s) 

time differentiation l' (t) = ;; f(t) 4=> 	 sF(s) - f{O) 

time 2nd differentiation flt(t) =~ f(t) 4=> 	 rF(s) - 8f(0) - f'(O) 

time n-th differentiation f(n)(t) = ;; f(t) 4=> 	 snF(s) ,1&-1f(O) - ... - f{n-I)(o) 

time integration f; J(7)dr =(u. J)(t) 4=> ~F(8) 
frequency integration tf(t) 4=> Isoo F(u)du 

F(s)-rltime inverse 	 f-I(t) 4=> 
,II 

F(s) riCO) r2(O) r"{O)time differentiation 	 f-n(t) ~ sn +---sr- +sn=r +... +-8
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Properties of Laplace Transfonns 

i) Time-shift (delay): J(t '-to)~ F(s)e-sto , to> 0 

ii) Time differentiation: dJ(t) ~sF(s)- J(O)
dt 

iii) Time integration: IJ(t)dt ~ F(s) 
o s 

iv) Linearity: aJ(t)+bg(t)~aF(s)+bF(s) 
• v) Convolution Integral: x(t)*h(t)~X(s)H(s) 

vi) Frequency-shift: eat J(t)~F(s-a) 

vii) Multiplying by t: tf(t)~- d~S) 

viii) Scaling: J(at)~! F ( ~), a> 0 

ix) Initial Value Theorem: lim {sF(s)} =J(O) 
9400 

x) Final Value Theorem: lim {sF(s)} =limJ(t) 
340 t400 

Standard Table ofForced Response or Particular Solutions 

i Input Particular Solution 
1 cxm(t) ao+a1x(t)+ ... +amxm(t) 

2 cxm(t)eax(t) (ao+a1x(t) +... +amxm(t) )eQX(t) 

3 cxm(t) cos (bx(t) ) 

, 

(ao+aJx(t) +.. .+amxm(t) ) cos (bx(t) ) +(Co +cJx(t) +.. .+cmxm(t) )sin(bx 

4 cxm(t) sin (bx(t)) (ao+~x(t)+... +amxm(t) )sin (bx(t))+(Co +c1x(t) +...+cmxm(t))cos (bx( 
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