UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE \& ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2012

```
TITLE OF PAPER: ELECTROMAGNETIC FIELDS II COURSE CODE: EE441
TIME ALLOWED: THREE HOURS
```


INSTRUCTIONS:

1. Answer any four (4) questions
2. Each question carries 25 marks.
3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

Use a Smith chart to determine the input impedance $Z_{i n}$ of the feed line for the lossless transmission line shown below in Figure 1. All lines have the characteristic impedance of $Z_{0}=50 \Omega$.

Figure 1

Question 2

A 90 millimeter section of a 50Ω transmission line is driven by a source with
$\nu_{g}(t)=12 \cos \left(6 \pi \times 10^{9} t-36.937^{\circ}\right)(\mathrm{V})$ and $\mathrm{Z}_{\mathrm{g}}=50 \Omega$, is terminated in a load $\mathrm{Z}_{\mathrm{L}}=(75-\mathrm{j} 100) \Omega$.
Determine:
a) λ on the line,
b) the reflection coefficient at the load,
c) the voltage standing wave ratio,
d) the input impedance, and
e) the input voltage $v_{i}(t)$.

Ouestion 3

A beam of light with wavelength $0.6 \mu \mathrm{~m}$ is normally incident in air upon a glass surface. If the surface is situated in the plane $\mathrm{z}=0$ and the relative permittivity of glass is 2.25 , determine:
a) the intrinsic impedances η_{1} and η_{2},
b) the reflection coefficient Γ,
c) the location of the electric field maxima in medium 1 (air), and
d) the fraction of the incident power transmitted into the glass medium.

Question 4

In a medium with $\varepsilon=36 \varepsilon_{0}$ and $\mu=\mu_{0}$ the electric field intensity of an electromagnetic wave is $\widetilde{\mathbf{E}}=(\hat{x}+j \hat{y}) 30 e^{-j k}(\mathrm{~V} / \mathrm{m})$.
Determine the associated time-harmonic magnetic field intensity $\mathbf{H}(z, t)$ and find the value of k. (25 marks)

Question 5

A TM wave propagating in a dielectric-filled waveguide of unknown permittivity has a magnetic field with y-component given by
$H_{y}=10 \cos (50 \pi x) \sin (100 \pi y) \times \sin \left(15 \pi \times 10^{10} t-100 \pi z\right)(\mathrm{mA} / \mathrm{m})$.
If the guide dimensions are $\mathrm{a}=2 \mathrm{~b}=2 \mathrm{~cm}$, determine:
a) the mode numbers,
b) the relative permittivity of the material in the guide,
c) the phase velocity,
d) obtain an expression for E_{x}.

Figure A. 6 A standard Smith Impedance or Admittance Coordinates

