UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE & ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2012

TITLE OF PAPER: ELECTROMAGNETIC FIELDS II

COURSE CODE: EE441

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer any four (4) questions
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

Use a Smith chart to determine the input impedance Z_{in} of the feed line for the lossless transmission line shown below in Figure 1. All lines have the characteristic impedance of $Z_0 = 50 \Omega$. (25 marks)

Figure 1

(6 marks)

Question 2

A 90 millimeter section of a 50 Ω transmission line is driven by a source with

 $v_g(t) = 12\cos(6\pi \times 10^9 t - 36.937^0)$ (V) and $Z_g = 50 \Omega$, is terminated in a load $Z_L = (75 - j100) \Omega$.

Determine:

a) λ on the line,	(2 marks)
b) the reflection coefficient at the load,	(4 marks)
c) the voltage standing wave ratio,	(2 marks)
d) the input impedance, and	(8 marks)
e) the input voltage $v_i(t)$.	(9 marks)

Question 3

a) the intrinsic impedances η_1 and η_2 ,

A beam of light with wavelength 0.6 µm is normally incident in air upon a glass surface. If the surface is situated in the plane z = 0 and the relative permittivity of glass is 2.25, determine:

b) the reflection coefficient Γ ,	(3 marks)
c) the location of the electric field maxima in medium 1 (air), and	(4 marks)
d) the fraction of the incident power transmitted into the glass medium.	(12 marks)

Question 4

In a medium with $\varepsilon = 36\varepsilon_0$ and $\mu = \mu_0$ the electric field intensity of an electromagnetic wave is

$$\widetilde{\mathbf{E}} = (\hat{x} + j\hat{y})30e^{-j\mathbf{k}z}$$
 (V/m).

Determine the associated time-harmonic magnetic field intensity $\mathbf{H}(z,t)$ and find the value of k. (25 marks)

Question 5

A TM wave propagating in a dielectric-filled waveguide of unknown permittivity has a magnetic field with y-component given by

$$H_y = 10\cos(50\pi x)\sin(100\pi y) \times \sin(1.5\pi \times 10^{10} t - 100\pi z)$$
 (mA/m).

If the guide dimensions are a = 2b = 2 cm, determine:

a) the mode numbers, (4 marks)

b) the relative permittivity of the material in the guide,

c) the phase velocity, (2 marks)

d) obtain an expression for E_x.

(12 marks)

(7 marks)

