UNIVERSITY OF SWAZILAND

MAIN EXAMINATION, MAY 2013

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 COURSE CODE: EE443
 TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. Answer any FOUR (4) of the following five questions.
2. Each question carries $\mathbf{2 5}$ marks.
3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTLL PERMISSION HAS BEEN GIVEN BY THE INVIGLLATOR

QUESTION ONE (25 marks)

(a) State two conditions that must be satisfied for a signal to be recovered from its samples.
(b) A signal $x(t)$ consists of a sum of sinusoids

$$
x(t)=2 \cos 1000 \pi t+3 \cos 3000 \pi t+4 \cos 4000 \pi t
$$

(i) What is should be the sampling rate for this signal?
(ii) What happens to each sinusoid when sampled at half the frequency stated in (i)?
(c) Given a discrete-time signal

$$
x[n]=6 \sin (n \pi / 100) \mathrm{V}, n=0,1,2,3, \ldots
$$

(i) Find the peak-to-peak range of the signal?
(ii) What is the quantization step (resolution) of a 10 -bit ADC for this signal? (2 mar
(iii) If the quantization resolution is required to be below 1 mV , how many bits are required in the ADC ?
(iv) What is the r.m.s value of quantization noise generated if a CD quality 16 -bit quantizer is used?
(d) A signal has a flat uniform spectrum. A $6^{\text {th }}$ order Butterworth filter with cut-off frequency of 5 kHz is used to filter this signal. The filtered signal is digitized using $10-$ bit quantization. What should be the minimum sampling rate if the aliased signal amplitude at 2 kHz should not exceed the r.m.s value of the quantization noise?

An nth order Butterworth analogue filter has a magnitude response $\frac{1}{\sqrt{1+\left(\frac{f}{f_{c}}\right)^{2 n}}}$.

QUESTION TWO (25 marks)

(a) Examine and discuss the stability or otherwise of the following IIR filters:
(i) $\quad H(z)=\frac{z(z-1)}{\left(z^{2}-z+1\right)(z+0.8)}$
(5 marks)
(ii) $3 y(n)=3.7 y(n-1)-0.7 y(n-2)+x(n-1), \quad n \geq 0$
(b) Two first-order IIR filters are defined by the difference equations:

$$
\begin{aligned}
& y_{1}(n)=x(n)-0.5 y_{1}(n-1), \quad n \geq 0 \\
& y_{2}(n)=x(n)-y_{2}(n-1), \quad n \geq 0
\end{aligned}
$$

The filters are connected in parallel so that the combined filter has a system function $H(z)=H_{1}(z)+H_{2}(z)$. Obtain an expression for the response $y[n]$ of the filter combination to an input sequence $x[n]=(-1)^{n}, \quad n \geq 0$

QUESTION THREE (25 marks)

(a) An FIR filter defined by

$$
y(n)=x(n)+2 x(n-1)+4 x(n-2)+2 x(n-3)+x(n-4), \quad n \geq 0
$$

(i) Obtain expressions for the magnitude and phase response of the filter.
(ii) Sketch the magnitude and phase response.
(b) An FIR has a transfer function given by $H(z)=1+0.6 z^{-1}+z^{-2}$. Given that the sampling rate is 7 kHz , determine the input signal frequency which will be maximally attenuated when passed through the filter.
(c) For the filter with a system function

$$
H(z)=\frac{1+3 z^{-1}+4 z^{-2}}{1-2 z^{-1}+5 z^{-2}+-z^{-3}}
$$

Sketch a realization structure for this filter.

QUESTION FOUR (25 marks)

(a) (i) How can a circular convolution of two sequences be obtained using FFTs and IFFT only?
(i) Using the above method and a radix-2 decimation-in-time FFT algorithm, find the circular convolution of the sequences:

$$
\begin{aligned}
& x_{1}[n]=[3,1,2,5] \\
& x_{2}[n]=[1,2,0,-2]
\end{aligned}
$$

(b) Convert the analogue filter $H(s)=\frac{1}{(s+1)(s+2)}$ into a digital filter using the impulse invariant technique with a sampling interval of 0.02 s .

OUESTION FIVE (25 marks)

A linear-phase FIR filter is to be designed with the following specifications:

Filter length, $N=9$
Normalized cut-off frequency $=\frac{4 \pi}{9} \mathrm{rad}$
Window to be applied = Hanning
(a) Calculate the filter coefficients with accuracy of 4 decimal places.
(b) Explain why a window function needs to be used in this design.
(c) Calculate the magnitude and phase response of this filter at a normalized frequency of $\frac{\pi}{9}$

TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

Discrete-time sequence $x(n), n \geq 0$	Z-transform $H(z)$
$k \delta(n)$	$\frac{k z}{z-1}$
k	$\frac{k z}{z-e^{-\alpha}}$
$k e^{-\alpha n}$	$\frac{k z}{z-\alpha}$
$k \alpha^{n}$	$\frac{k z}{(z-1)^{2}}$
$k n$	$\frac{k z(z+1)}{(z-1)^{3}}$
$k n^{2}$	$\frac{k \alpha z}{(z-\alpha)^{2}}$
$k n \alpha^{n}$	

QUANTIZATION

For a sine wave $S Q N R=6.02 B+1.76 \mathrm{~dB}$.

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

Name of Widow	Normalized Transition Width	Passband Ripple (dB)	Main lobe relative to Sidelobe (dB)	Max. Stopband attenuation (dB)	6 dB normalized bandwidth (bins)	Window Function (n), $\|\mathbf{n}\| \leq(N-1) / 2$
Rectangular	$0.9 / \mathrm{N}$	0.7416	13	21	1.21	1.00
Hanning	$3.1 / \mathrm{N}$	0.0546	31	44	2.00	$0.5+0.5 \cos \left(\frac{2 \pi n}{N}\right)$

Bin width $=\frac{f_{s}}{N} \mathrm{~Hz}$

