UNIVERSITY OF SWAZILAND MAIN EXAMINATION, MAY 2013

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING

COURSE CODE: EE443

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer any <u>FOUR</u> (4) of the following five questions.
- 2. Each question carries 25 marks.
- 3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

<u>QUESTION ONE</u> (25 marks)

- (a) State two conditions that must be satisfied for a signal to be recovered from its samples.
 (2 marks)
- (b) A signal x(t) consists of a sum of sinusoids

 $x(t) = 2\cos 1000\pi t + 3\cos 3000\pi t + 4\cos 4000\pi t$

- (i) What is should be the sampling rate for this signal? (2 mar
- (ii) What happens to each sinusoid when sampled at half the frequency stated in (i)?

(3 mar

(c) Given a discrete-time signal

 $x[n] = 6\sin(n\pi/100)$ V, n = 0, 1, 2, 3, ...

- (i) Find the peak-to-peak range of the signal? (1 ma
- (ii) What is the quantization step (resolution) of a 10-bit ADC for this signal? (2 mar
- (iii) If the quantization resolution is required to be below 1 mV, how many bits are required in the ADC? (3 mar
- (iv) What is the r.m.s value of quantization noise generated if a CD quality 16-bit quantizer is used? (2 mar
- (d) A signal has a flat uniform spectrum. A 6th order Butterworth filter with cut-off frequency of 5 kHz is used to filter this signal. The filtered signal is digitized using 10-bit quantization. What should be the minimum sampling rate if the aliased signal amplitude at 2 kHz should not exceed the r.m.s value of the quantization noise?

An *n*th order Butterworth analogue filter has a magnitude response $\frac{1}{\sqrt{1 + \left(\frac{f}{f}\right)^{2n}}}$

(10 marks)

Page 2 of 8

<u>QUESTION TWO</u> (25 marks)

(a) Examine and discuss the stability or otherwise of the following IIR filters:

(i)
$$H(z) = \frac{z(z-1)}{(z^2 - z + 1)(z + 0.8)}$$
 (5 marks)

5

(ii)
$$3y(n) = 3.7y(n-1) - 0.7y(n-2) + x(n-1), n \ge 0$$
 (7 marks)

(b) Two first-order IIR filters are defined by the difference equations:

$$y_1(n) = x(n) - 0.5y_1(n-1), \quad n \ge 0$$

 $y_2(n) = x(n) - y_2(n-1), \quad n \ge 0$

The filters are connected in parallel so that the combined filter has a system function $H(z) = H_1(z) + H_2(z)$. Obtain an expression for the response y[n] of the filter

combination to an input sequence $x[n] = (-1)^n$, $n \ge 0$ (13 marks)

QUESTION THREE (25 marks)

(a) An FIR filter defined by

 $y(n) = x(n) + 2x(n-1) + 4x(n-2) + 2x(n-3) + x(n-4), \quad n \ge 0$

- (i) Obtain expressions for the magnitude and phase response of the filter. (6 marks)
- (ii) Sketch the magnitude and phase response. (6 marks)
- (b) An FIR has a transfer function given by $H(z) = 1 + 0.6z^{-1} + z^{-2}$. Given that the sampling rate is 7 kHz, determine the input signal frequency which will be maximally attenuated when passed through the filter. (8 marks)
- (c) For the filter with a system function

$$H(z) = \frac{1 + 3z^{-1} + 4z^{-2}}{1 - 2z^{-1} + 5z^{-2} + -z^{-3}}$$

Sketch a realization structure for this filter.

(5 marks)

QUESTION FOUR (25 marks)

- (a) (i) How can a circular convolution of two sequences be obtained using FFTs and IFFT only?
 - (i) Using the above method and a radix-2 decimation-in-time FFT algorithm, find the circular convolution of the sequences:

 $x_1[n] = [3, 1, 2, 5]$

 $x_2[n] = [1, 2, 0, -2]$ (15 marks)

(b) Convert the analogue filter $H(s) = \frac{1}{(s+1)(s+2)}$ into a digital filter using the impulse invariant technique with a sampling interval of 0.02 s. (10 marks)

QUESTION FIVE (25 marks)

A linear-phase FIR filter is to be designed with the following specifications:

Filter length, N = 9

Normalized cut-off frequency = $\frac{4\pi}{9}$ rad

Window to be applied = Hanning

- (a) Calculate the filter coefficients with accuracy of 4 decimal places. (15 marks)
- (b) Explain why a window function needs to be used in this design. (2 marks)
- (c) Calculate the magnitude and phase response of this filter at a normalized frequency of

$$\frac{\pi}{9}$$
 (8 marks)

TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

Discrete-time sequence $x(n), n \ge 0$	Z-transform H(z)
kð(n)	k
k	$\frac{kz}{z-1}$
ke ^{-αn}	$\frac{kz}{z-e^{-\alpha}}$
$k\alpha^n$	$\frac{kz}{z-\alpha}$
kn	$\frac{kz}{(z-1)^2}$
kn ²	$\frac{kz(z+1)}{(z-1)^3}$
knα ⁿ	$\frac{k\alpha z}{\left(z-\alpha\right)^2}$

QUANTIZATION

For a sine wave SQNR = 6.02B + 1.76 dB.

Name of Widow	Normalized Transition Width	Passband Ripple (dB)	Main lobe relative to Sidelobe (dB)	Max. Stopband attenuation (dB)	6 dB normalized bandwidth (bins)	Window Function ω(n), n ≤(N-1)/2
Rectangular	0.9/N	0.7416	13	21	1.21	1
Hanning	3.1/N	0.0546	31	44	2.00	$0.5 + 0.5 \cos\left(\frac{2\pi n}{N}\right)$
Hamming	3.3/N	0.0194	41	53	1.81	$0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right)$
Blackman	5.5/N	0.0017	57	74	2.35	$0.42 + 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right)$
	2.93/N (β=4.54)	0.0274		50		$I_o \left(\beta \left\{ 1 - \left[\frac{2n}{N-1} \right]^2 \right\}^{\frac{1}{2}} \right)$
Kaiser	4.32/N (β=6.76	0.00275		70		$\frac{1}{2} \left(\frac{p}{1} \left[\frac{1}{N-1} \right] \right)$
	5.71/N (β=8.96)	0.000275		90		$I_o(eta)$

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

÷.,

Bin width =
$$\frac{f_s}{N}$$
 Hz