UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, JULY 2013

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING

COURSE CODE: EE443

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer any <u>FOUR</u> (4) of the following five questions.
- 2. Each question carries 25 marks.
- 3. Tables of selected window functions and selected Z-transform pairs are attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

<u>QUESTION 1</u> (25 marks)

- (a) Figure Q.1a shows the block diagram of a simplified digital signal processing scheme
 - (i) Explain its purpose each block. (5 marks)
 - (ii) Describe the signal coming out of each block specifying whether it is discrete or continuous (in time or amplitude). (5 marks)

- (b) A signal has a flat uniform spectrum. A second order (n=2) Butterworth filter with cut-off frequency of 3.4 kHz is used to filter this signal. The filtered signal is then sampled at 8 kHz. Determine
 - (i) The percentage of aliased signal to non-aliased signal at the cut-off frequency.

(3 marks)

- (ii) The percentage of aliased to non-aliased signal at 1 kHz. (3 marks)
- (iii) The r.m.s value of the quantization noise, if a signal $5\sin(6800\pi t)$ volts is passed through the filter and then quantized using 12 bits. (3 marks)

An *n*th order Butterworth analogue filter has a magnitude response $\frac{1}{\sqrt{1 + \left(\frac{f}{f_o}\right)^{2n}}}$ where *f* is

the frequency and f_c is the cut-off frequency.

- (c) The following signals are sampled at 16 kHz rate. Determine the first 4 samples of each signal.
 - (i) $x_1(t) = 5e^{-5000t}u(t)$ (2 marks)
 - (ii) $x_2(t) = 5\cos(3000\pi t)u(t)$ (2 marks)
 - (iii) $x_3(t) = 5e^{-5000t} \cos(3000\pi t)u(t) x_3(t) = 5e^{-5000t} \cos(3000\pi t)u(t)$ (2 marks)

Page 3 of 8

· •

<u>QUESTION 2</u> (25 marks)

۰.

, ·

(a)	(i)	(1 mark)						
	(ii)	(1 mark)						
	(iii)	Using your formula, determine the DFT of the sequence $x[n] = [1, 2, -3, 4]$.						
			(4 marks)					
	(iv)	Sketch the magnitude and phase spectrum of the sequence given in (iii) assuming						
		that the sampling frequency is 200 Hz.	(4 marks)					
(b)	(i)	What is the purpose of using an FFT algorithm to evaluate the DFT?	(1 mark)					
(ii) Using a decimation-in-time FFT algorithm, evaluate the DFT of the seque								
		x[n] = [1, 2, 0, -2, 2, 0, 3, -2]	(14 marks)					

QUESTION 3 (25 marks)

(a) A discrete system in described by the difference equation

$$y(n) = 0.7y(n-1) - 0.1y(n-2) + x(n) + x(n-1)$$

- (i) Find the zeros and poles of the system. (5 marks)
- (ii) Is the system stable or not? Give a reason for your answer. (2 marks)
- (iii) Obtain the impulse response of the system. (6 marks)

(b) For the discrete system with a transfer function
$$H(z) = \frac{k(z+1)}{(z-0.8)}$$

- (i) Write down an expression for its frequency response. (2 marks)
 (ii) Obtain a simplified expression for its frequency response at ¹/₃ of the sampling frequency. (6 marks)
- (iii) Determine the value of k if the magnitude of the transfer function at $\frac{1}{3}$ of the sampling frequency is 10. (2 marks)
- (iv) Find the phase response in degrees of the system at $\frac{1}{3}$ of the sampling frequency.

(2 marks)

Page 4 of 8

QUESTION 4 (25 marks)

(a) An IIR digital filter is described by the difference equation

$$y(n) = 0.8y(n-1) - 0.2y(n-3) + 0.3y(n-4) + x(n) + 3x(n-1) + 2x(n-2) + 4x(n-3)$$

Sketch a realization structure for this filter. (5 marks)

(b) An FIR has a transfer function given by $H(z) = 1 + 0.6z^{-1} + z^{-2}$. Given that the sampling rate is 7 kHz, determine the input signal frequency which will be maximally attenuated when passed through the filter. (8 marks)

- (c) A DSP system has the transfer function $H(z) = \frac{1+z}{z-0.6}$. Determine:
 - (i) The unit step response y(n) of the system. (6 marks)
 - (iii) The response y(n) of the system to an input sequence $x(n) = (0.4)^n u(n)$. (6 marks)

QUESTION 5 (25 marks)

(a) Examine the stability or otherwise of the discrete system with the transfer function

$$H(z) = \frac{z + 0.6}{(z - 0.4)(z^2 + \sqrt{2}z + 1)}$$
 (6 marks)

(b) A linear-phase FIR filter is to be designed with the following specifications:

Filter length, N = 5Normalized cut-off frequency = 0.55π rad Window to be applied = Hamming

(i) Calculate the filter coefficients with accuracy of 4 decimal places. (14 marks)

(ii) Calculate the magnitude and phase response at a normalized frequency of $\frac{\pi}{4}$.

(5 marks)

Discrete-time sequence $x(n), n \ge 0$	Z-transform H(z)
kð(n)	k
k	$\frac{kz}{z-1}$
ke ^{-αn}	$\frac{kz}{z-e^{-\alpha}}$
kα"	$\frac{kz}{z-\alpha}$
kn	$\frac{kz}{(z-1)^2}$
kn^2	$\frac{kz(z+1)}{(z-1)^3}$
$kn\alpha^n$	$\frac{k\alpha z}{\left(z-\alpha\right)^2}$

TABLE OF Z-TRANSFORMS OF SOME COMMON SEQUENCES

QUANTIZATION

For a sine wave SQNR = 6.02B + 1.76 dB.

LOW PASS TO LOW PASS TRANSFORMATION

$$s = \frac{s}{\omega_p}$$
 where pre-warped frequency $\omega_p = \tan\left(\frac{\pi f_c}{f_s}\right)$

SUMMARY OF IMPORTANT FEATURES OF SELECTED WINDOW FUNCTIONS

	Normalized Transition	Passband Ripple (dB)	Main lobe relative to	Max. Stopband	6 dB normalized	Window Function $\omega(n), n \leq (N-1)/2$
Name of	Width		Sidelobe (dB)	attenuation	bandwidth	
Widow				(dB)	(bins)	
Rectangular	0.9/N	0.7416	13	21	1.21	1
Hanning	3.1/N	0.0546	31	44	2.00	$0.5 + 0.5 \cos\left(\frac{2\pi n}{N-1}\right)$
Hamming	3.3/N	0.0194	41	53	1.81	$0.54 + 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$
Blackman	5.5/N	0.0017	57	74	2.35	$0.42 + 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right)$
	2.93/N	0.0274		50		$\left(\left[\left[2n \right]^2 \right]^{\frac{1}{2}} \right)$
Kaiser	4.32/N (β=6.76	0.00275		70		$\frac{I_o\left(\beta\left\{1-\left\lfloor\frac{2n}{N-1}\right\rfloor\right\}\right)}{2}$
	5.71/N (β=8.96)	0.000275		90		$I_o(\beta)$

Ę

Bin width =
$$\frac{f_s}{N}$$
 Hz