UNIVERSITY OF SWAZILAND
 MAIN EXAMINATION, SECOND SEMESTER MAY 2013

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROELECTRONIC CIRCUITS COURSE CODE: EE523

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries $\mathbf{2 5}$ marks.
2. If you think not enough data has been given in any question you may assume any reasonable values.
3. A sheet containing some selected useful formulae is attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION

 HAS BEEN GIVEN BY THE INVIGILATOR
QUESTION ONE (25 marks)

Consider the IC amplifier shown in Figure-Q1.

Figure-Q1

You may assume the following data.
$\begin{array}{llll}V_{A, P N P}=70 \mathrm{~V} & \beta_{P N P}=75 & V_{A, N P N}=125 \mathrm{~V} & \beta_{N P N}=100 \\ V_{C C}=12 \mathrm{~V} & V_{e e}=-12 \mathrm{~V} & V_{B E}=0.6 \mathrm{~V} & \end{array}$

Calculate the following for this amplifier.
(a) Quiescent collector currents of the transistors.
(b) Power dissipation of the amplifier at no signal.
(c) Signal voltage gain $\frac{V_{o}}{V_{d}}$.
(d) Input impedance and the output impedance.
(e) Input common mode voltage range.

OUESTION TWO (25 marks)

The block diagram of an uncompensated IC op-amp is shown in Figure-Q(2).

Figure-Q2
(a) Show to which points a capacitor is usually added to have dominant pole compensation.
(b) If the compensation capacitor is 35 pF , find the bandwidth of the op-amp after compensation.

$$
R_{d o}=1.5 M \quad R_{i 2}=2 M \quad A_{V}=-600
$$

Value of G_{m} is not given intentionally.
(c) The DC gain of the op-amp is 100 dB and is compensated as in (b).
(i) What is the bandwidth of the op-amp at unity gain?
(ii) The compensated op-amp is used with negative feedback to obtain a minimum bandwidth of 15 kHz . Find the limit of the maximum gain available and the feedback factor.
(d) The current source in the differential amplifier stage supplies a current of $25 \mu \mathrm{~A}$. If the maximum available output is 12 V , calculate the slew rate and the full power bandwidth of the compensated amplifier.

QUESTION THREE (25 marks)

(a) Consider the emitter coupled differential pair shown in Figure-Q3.

The input signal v_{1} and v_{2} are any voltage signals. Assuming that the transistors $Q 1$ and Q2 are matched, show the circuit can be used as a multiplier giving $v_{o}=k v_{x}\left(v_{1}-v_{2}\right)$, where k is a constant. In how many quadrant/s this multiplier is operational?
(10 marks)
(b) A multiplier can be assumed to have the input-output relationship $M=k X Y$ where X and Y are the inputs and M is the output. The multiplier constant is k. Using this multiplier, show the implementation of the following with justification.
(i) A frequency doubler.
(ii) Square root function.
(ii) A divider.

QUESTION FOUR (25 marks)

(a) The inverter shown in Figure-Q4 is fabricated in a $1.2 \mu \mathrm{~m}$ CMOS technology.

Figure - Q4

You may use the following process parameters and assume usual notation throughout.

$$
\begin{array}{lll}
L_{N}=L_{P}=1.2 \mu \mathrm{~m} & W_{N}=1.8 \mu \mathrm{~m} & k_{n}^{\prime}=70 \frac{\mu A}{V^{2}} \\
k_{p}^{\prime}=25 \frac{\mu A}{V^{2}} & \left|V_{t p}\right|=V_{t n}=0.8 \mathrm{~V} &
\end{array}
$$

(i) Show that the input threshold voltage $V_{t h}$ is given by

$$
V_{t h}=\frac{a\left(V_{D D}-\left|V_{t p}\right|\right)+V_{t h}}{1+a} \quad \text { where } \quad a=\sqrt{\frac{k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}}}
$$

(ii) Calculate $V_{t h}$ and W_{p} if the devices are matched.
(iii) Find the values of $V_{I H}, V_{I L}$ and the noise margins.
(iv) Assuming $W_{p}=5.5 \mu \mathrm{~m}$, calculate the output resistance of the inverter when $V_{o}=V_{O H}$.
(v) If the total effective load capacitance is 25 fF , estimate the propagation delay t_{p} assuming $W_{p}=5.5 \mu \mathrm{~m}$.
(vi) What is the power dissipation of the inverter if the load capacitance is 25 fF and operated at a frequency of 100 MHz .
(b) Show the implementation of a 3-input NOR gate in CMOS technology. Provide transistor $\left(\frac{W}{L}\right)$ ratios in a $0.25 \mu \mathrm{~m}$ process if $n=2$ and $p=5$.

QUESTION FIVE (25 marks)

(a) A switched capacitor circuit is shown in Figure-Q5(a), which is driven by the two phase clock ϕ_{1} and ϕ_{2} with a cycle time of T_{C}.

Figure-Q5(a)
(i) Derive expressions for $\frac{v_{o}}{v_{i n}}$ and $R_{e q}$.
(ii) Show how you can get an inverted output v_{o} using the same circuit.
(b) A circuit of an active low pass filter is shown in Figure-Q5(b).

Figure-Q5(b)

The transfer function of the circuit is given by $-\frac{1}{R_{3} R_{1} C_{5} C_{6}\left(s^{2}+\frac{s}{C_{5} R_{2}}+\frac{1}{C_{5} C_{6} R_{3} R_{4}}\right)}$.
(i) Find the switched capacitor equivalent for this circuit using only two op-amps.

Mark the clocks ϕ_{1} and ϕ_{2} clearly on the diagram.
(5 marks)
(ii) Calculate the capacitor values of your implementation to have a $3 d B$ cutoff frequency of 10 KHz when operating with a 100 KHz clock. You may assume, $R_{3}=R_{4}$ and,

$$
C_{5}=C_{6}=10 p F \quad Q=\frac{1}{\sqrt{2}} \quad K=1 \quad \omega_{3 d B}=\omega_{0}
$$

SOME SELECTED USEFUL FORMULAE

MOSFET Equations:
$i_{D}=k_{n}^{\prime} \frac{w}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] \quad$ in triode region
$i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2} \quad$ in saturation region

Ebers-Moll Equation for i_{C} :
$i_{C}=I_{S}\left(e^{v_{B E} / V_{T}}-1\right)-\frac{I_{S}}{\alpha_{R}}\left(e^{v_{B C} / V_{T}}-1\right)$

Basic Inverter:
$t_{P H L}=\frac{2 C}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t, n}\right)}\left[\frac{V_{t, n}}{\left(V_{D D}-V_{t, n}\right)}+\frac{1}{2} \ln \left(\frac{3 V_{D D}-4 V_{t, n}}{V_{D D}}\right)\right]$

Low Pass Filter:
Transfer Function $=\frac{K \omega_{0}^{2}}{s^{2}+\left(\frac{\omega_{0}}{Q}\right) s+\omega_{0}^{2}}$

