University of Swaziland Faculty of Science and Engineering Department of Electrical and Electronic Engineering
 Supplementary Examination 2014

Title of Paper: Analogue Design I
Course Number: EE321

Time Allowed: $\quad 3 \mathrm{hrs}$

Instructions:

1. Answer any four (4) questions.
2. Each question carries 25 marks.

This paper should not be opened until permission has been given by the invigilator.

This paper contains eighty (8) pages including this page.

Question 1

a) Write some notes on the advantages of tuned amplifiers.
b) For the low pass filter in Fig. $1(\mathrm{~b}), C_{F}=0.01 \mu F, R_{F}=10 k \Omega$ and $R_{i}=1 \mathrm{k} \Omega$. Calculate the voltage gain at 1 MHz .

Fig. 1(b)
c) Derive an expression for the voltage gain for the circuit in Fig. 1(c). Assume both transistors are well matched and R_{E} is very large.

Fig. 1(c)
d) A compensating capacitor of 1000 pF has a maximum charging current of 1 mA . What is the slew rate?
e) Define f_{T}.

Question 2

a) For the two-power supply version of the voltage-divider bias circuit shown in Fig. 2(a) derive an expression for the emitter current I_{E} in terms of β.

Fig. 2(a)
b) For Fig. 2(b) below, use the following parameters: $R_{B}=330 k \Omega, R_{L}=5 k \Omega, R_{s i g}=5 k \Omega$, $I_{C}=1.3 \mathrm{~mA}, V_{T}=25 \mathrm{mV}$ and $\beta=100$.

Fig. 2(b)
i) Draw the small signal model of the circuit.
ii) Calculate the value of R_{C} so that the overall gain, $G_{v}=\frac{v_{o}}{v_{s i g}}=-27 \mathrm{~V} / \mathrm{V}$.
c) What is the frequency of oscillation of the astable multivibrator circuit shown in Fig. 2(c) below, where $V_{C C}=+5 V,-V_{E E}=-5 V, R_{1}=6.8 k \Omega, R_{2}=6.8 k \Omega, R=10 k \Omega$ and $C=0.001 \mu F$.

Fig. 2(c)
d) An amplifier has an input power of $2 m W$ and an output power of 345 mW . What is its decibel power gain?
e) Differentiate between an ideal and non-ideal op amp.

Question 3

a) Consider the emitter-follower amplifier of Fig. 3(a) for $I=1 \mathrm{~mA}, \beta=100, V_{T}=25 \mathrm{mV}$, $R_{B}=100 k \Omega, R_{s i g}=20 k \Omega$ and $R_{L}=1 k \Omega$.

Fig. 3(a)
i) Find $R_{i n}$
ii) Find $\frac{v_{o}}{v_{\text {sig }}}$
b) A parallel resonant circuit has a capacitor of 100 pF in one branch and inductance of $100 \mu \mathrm{H}$ plus a resistance of 10Ω in the parallel branch. If the supply voltage is 10 V , calculate:
i) The resonant frequency
ii) The impedance of the circuit
iii) The line current at resonance
iv) The Q-factor of the circuit.
c) A particular small geometry BJT has $f_{T}=5 \mathrm{GHz}$ and $C_{\mu}=0.1 \mathrm{pF}$ when operated at $I_{C}=0.5 \mathrm{~mA}$ and $V_{T}=25 \mathrm{mV}$.
i) Find g_{m}
ii) When $\beta=150$, find r_{π} and f_{β}.

Question 4

a) Consider the common-emitter amplifier shown in Fig. 4(a) under the following conditions: $R_{\text {sig }}=5 k \Omega, R_{1}=33 k \Omega, R_{2}=22 k \Omega, R_{E}=3.9 k \Omega, R_{C}=4.7 k \Omega, R_{L}=5.6 \mathrm{k} \Omega$, $V_{C C}=5 \mathrm{~V}, r_{o}=300 \mathrm{k} \Omega, \beta=120$, dc collector current, $I_{C}=0.3 \mathrm{~mA}, V_{T}=25 \mathrm{mV}$, $C_{\mu}=1 p F, f_{T}=700 \mathrm{MHz}$ and $r_{x}=50 \Omega$. Find:
i) C_{π}
ii) The upper 3-dB frequency, f_{H}.

Fig. 4(a)
b) Determine the output voltage of an op amp for input voltages of $V_{i_{1}}=150 \mu \mathrm{~V}$ and $V_{i_{2}}=140 \mu \mathrm{~V}$. The amplifier has a differential gain of $A_{d}=4000$ and the value of Common-Mode Rejection Ratio (CMRR) is 10^{5}.
c) In Fig. 4(c) below, $V_{\text {sat }}= \pm 13 \mathrm{~V}, R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$. Calculate:
i) The upper threshold point (UTP)
ii) The lower threshold point LTP
iii) The hysteresis voltage (V_{H})

Fig. 4(c)

Question 5

a) The input Miller capacitance in Fig. 5(a) below creates a bypass circuit on the input side. If $A=300$ and $C=10 p F$, what is the critical frequency of this bypass circuit?

Fig. 5(a)
b) For Fig. 5(b) below, determine $f_{L_{s}}$, i.e. low frequency response due to the input coupling capacitor, $C_{s} . V_{T}=26 \mathrm{mV}$ and $V_{B E}=0.7 \mathrm{~V}$.

Fig. 5(b)
c) For the noninverting amplifier in Fig. 5(c) derive an expression its open loop gain, $A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}$.

Fig. 5(c)
d) What is Stagger tuning? Sketch the frequency response of this amplifier.

