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Question 1 


a) Define what a system is. [2] 


b) Consider the periodic signal x(t) shown in Fig. 1 (b); [5] 


et~ 

-. _. . 
-3 -1 1 3 

Fig. 1 (b) 

Find the closed-form expression for the Fourier series coefficients of x(t). 

c) Given that e-4t F(s). Find the inverse Laplace transforms of: 

[2] 

ii) F(s-2)+F(s+3) [2] 

d) Find and sketch the first derivative of the following signal: [4] 

I, t > 0 
x(t) == sgn(t) == {-1, t < 0 

e) Find the transfer function of the system determined by the input! output relationship 

d 2y dy dx
-+7-+12y==-+2x
dt2 dt dt 

and determine its impulse response. [10] 
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Question 2 

a) 	 Detennine the total impulse response h(t) ofthe connected system in Fig. 2(a) [2] 

x(t) yet) 

Fig.2(a) 

b) 	 Using the graphical method, compute, yet) =x(t) *h(t) for x(t) =2[u(t) - u(t 1)] and 

h(t)=e l [u(t)-u(t-2)]. [10] 

c) 	 Consider the periodic signal x(t) given by the expression: 

x(t) = (2+2j)e-J31 _3je-J21 +5+3jeJ2t +(2-2j)eJ31 

What is the power of x(t)? Hint: Use the equation that relates the Fourier coefficients to 

the power of the signal. [3] 

d) 	 The causal LTI system S has the block diagram representation shown in Fig. 2( d). 
Detennine a differential equation relating the input x(t) to the output yet) of this system. 

[10] 

x(t) ---...... l---...... y(t) 

Fig.2(d) 
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Question 3 

a) State whether each of the following statements are TRUE or FALSE. 

i) If a signal J(t) is odd then - J(-t) is an even signal. [1] 

ii) A time-invariant system must be also linear. [1] 

iii) The signal x(t) =cos ( .fi7rt) +sin ( 2.fi7rt) is periodic. [1] 

iv) Periodic signals are always finite energy signals. [1] 

b) Find the initial and final values of yet) if Yes) is given by: [4] 

Yes) = 1O(2s +3) 
S(S2 +2s+5) 

c) What are Walsh functions? [2] 

d) Find and sketch the Fourier Series coefficients of the signal in Fig. 3(d). [8] 

x(n] 

n 
o 1 2 

Fig.3(d) 

e) For the following signal, determine the location of the poles [5] 

x(t) =[e21 +3te21 +e-I sin ( 6t)] u(t) 

f) Differentiate between a stable and an unstable system. [2] 

-3 -2. -1 


4 



----------------

Question 4 

a) 	 Determine whether or not each of the following signals is periodic. If a signal is periodic, 

determine its fundamental period. 

i) 	 x[n] =cos
2 
(; n) [2] 

ii) 	 x(t) = /l; -IJ [2] 

b) 	 Is the following pair of signals orthonormal over the interval (0,1)? JustifY your answer? 
[5] 

~(t) 

--+-+--+--f--+-~..... t 
11/2 111'2 

-.J2 fo------------  -Ji 

c) Sketch the even and the odd components of the signal in Fig. 4(c). 

x(t) 

~ 
-2 1 1 t 

Fig.4(c) 

d) Using Laplace transforms solve the second-order linear differential equation 

y' (t) +5y' (t) +6yet) = x(t) 

with initial conditions yeO) = 2, y' (0) =1 and x(t) =e-tu(t). 

[6] 

[10] 
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Question 5 

a) Suppose x(t) is shown in Fig. 5(a). Sketch the following signal, [x(t) + x(-t)]u(t) . [5] 

o 1 2 t 

-1 

Fig.5(a) 

b) Given circuit in Fig. 5(b) with the elements shown. 

+ 
v(t) i (t) + 

Vc{t) 

Fig.5(b) 

L=1H, R=3Q, C=O.5F 

c) 

Find the loop current i (t) . 

Determine the region of convergence of the following function. 

x(t) =ItIe-21tl 

[16] 

[4] 
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Table ofLaplace Transfonns 

delta. function o(t) ~ I 

shifted delta function o(t- a) ~ e-a8 

unit step u(t) ~ 1 
8 

ramp tu(t) <=b 1 
Sf 

parabola t2u(t) ~ 2 
B3" 

n-th power tn ~ n! 
-;n:FT 

exponential decay e--tU 1 
s+o 

e-altl ~ 2atwo-sided exponential decay 11.'2-82 

te-at ~ 1 
(s+a)2 

8(1- at)e-at ~ (s+a)2 
I_e.-at aexponential approach 

8(s+a) 

sine sin (wt) ~ w 
/11 

2+w2 

cosine cos (wt) ~ s 
s2+w2 

hyperbolic sine sinh(wt) ~ w 
1/1'-w2 

hyperbolic cosine rosh(wt) ~ 
exponentially decaying sine e-at sin (wt) <=b w 

{s+afl +w2 

exponentially decaying cosine e-at cos (wt) ~ lI+a 
(s+a)2+w2 

frequency differentiation tf(t) ~ -F'(s) 
£,

frequency n--th differentiation tn f(t) ¢:==:} (_I)np(nl(s) 

time differentiation fl(t) = ;f(t) ~ sF{s) f(O) 


time 2nd differentiation j"(t) = -9tr f(t) 82F(s) - 81(0) - f'(0) 


time n-th differentiation fen) (t) =:t: f(t) ~ snF(s) - sn-l f(O) - •.. - I(n-l)(o) 


time integration f~ f(T)dr = (u * f){t) ~ ~F(8) 
frequency integration tf{t) fs

oo F(u)du 

F(s)-rltime inverse f-l(t) ~ s 
F(s) rICO) r2{~) rn(O)time differentiation f-n(t) ~ -sn- + -sn- + 8'11- +... + s 
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Properties ofLaplace Transforms 

i) Time-shift (delay): f(t-to) F(s)e-sto , to >0 

ii) Time differentiation: df(t) ~sF(s) - f(O)
dt 

iii) Time integration: Jf(t)dt~ F(s) 
o s 

iv) Linearity: af(t)+bg(t)~aF(s)+bF(s) 

v) Convolution Integral: x(t)*h(t)~X(s)H(s) 

vi) Frequency-shift: eatf(t)~F(s-a) 

vii) Multiplying by t: tf(t)~- dF(s) 
ds 

viii) Scaling: f(at)~!F(:} a>O 

ix) Initial Value Theorem: lim{sF(s)} = f(O) 
54CO 

x) Final Value Theorem: lim {sF(s)} = f(oo) 
540 

Standard Table ofForced Response or Particular Solutions 

Input Particular Solution • 

1 cxm(t) ao+a1x(t) +... +amx m(t) 

2 cxm(t)eax(t) (ao+a1x(t) +... +amxm(t) )eax(t) 

3 cx m(t) cos (bx(t)) (ao+~x(t)+.. .+am~(t)) cos(bx(t))+(Co +c1x(t)+ ...+cmxm(t))sin(bx(t)) 

4 cxm(t) sin (bx(t)) (ao+~x(t)+ ...+am~(t))sin(bx(t) )+(Co +c1x(t)+ ... +cmxm(t))cos (bx(t)) 
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