UNIVERSITY OF SWAZILAND
 MAIN EXAMINATION, SECOND SEMESTER MAY 2014

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

```
TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER
    SYSTEMS
COURSE CODE: EE423
TIME ALLOWED: THREE HOURS
```


INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries $\mathbf{2 5}$ marks.
2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) (i) Show the difference between Von-Neumann and Harvard architectures.

> (2 marks)
(ii) Write the main features of RISC type microcontrollers.
(2 marks)
(iii) Indicate the peripheral modules available in PIC 16F84A and PIC 16 F 877.
(b) A few lines of a program using 16F84A is given in Figure-Q1. Assume it is being used with a 4 MHz crystal oscillator.

Figure-Q1
(i) Explain the three statements shown in Figure-Q1.

> (3 marks)
(ii) What is the clock frequency at the timer input?
(3 marks)
(iii) Calculate the time it will take for each overflow of the timer.
(4 marks)
(iv) An application requires the timer to overflow in each 20 ms when using a crystal oscillator as the device clock. Assume that the crystals available for the selection are $1 \mathrm{MHz}, 1.843 \mathrm{MHz}, 3.277 \mathrm{MHz}$ and 3.579 MHz . Select a suitable crystal justifying your answer. Modify the assembly instructions in Figure-Q1 to facilitate your selection.

OUESTION TWO (25 marks)

Two program segments in a microcontroller program are shown in Figure-Q2(a) and in Figure-Q2(b).

(a) Consider the program shown in Figure-Q2(a).
(i) Which part of this program is a subroutine?
(ii) List the contents of the program counter and the changes in stack memory from the execution of 'begin instruction' to the instruction following the 'call'. (5 marks)
(b) A subroutine used to provide a delay is shown in Figure-Q2(b). Assume that a 16F84A microcontroller clocked with a 10 MHz crystal runs this program.
(i) Calculate the actual delay time that the program will produce.
(ii) Show how you can obtain a delay as close as possible to $400 \mu \mathrm{~s}$ by changing only a single instruction of this routine.
(iii) Modify this routine to produce a time delay as close as possible to 10 ms .

QUESTION THREE (25 marks)

A 16 F 84 A microcontroller based simple environment control system is to be designed for a green house in a plant nursery. The system will have the following components having TTL compatible inputs and outputs.

Temperature sensor: Returns ' 0 ' if the temperature falls below a minimum safe limit.
Moisture sensor: \quad Returns' 0 ' if the moisture is less than a minimum value.
Light sensor: \quad Returns ' 0 ' if the light level falls below a minimum value.

Controlled components: A water sprinkler, heater and lights
(i) Draw a circuit showing the microcontroller pins used and the connections to the sensors and the controlled components. Sensors and the controlled components can be shown as blocks.
(ii) Explain briefly the control logic you are going to implement by the microcontroller program.

> (7 marks)
(iii) Draw a flowchart for the microcontroller program.
(9 marks)
(iv) Write the assembly instructions which configure the ports as required by your design.

QUESTION FOUR (25 marks)

(a) In a 16 F 84 A microcontroller program, the INTCON register is set to B 0 h .
(i) Explain the INTCON register settings.
(ii) At some point in the program execution, the INTCON register showed a value of 32 h . Explain the situation described by the INTCON register.

> (2 marks)
(iii) In the case of an interrupt, state the events that will take place in the program execution. Indicate the essential features to be included in an interrupt service routine.

(6 marks)

(iv) Assume that the microcontroller runs on a 8 MHz crystal oscillator. The system has to produce a regular interrupt in every $512 \mu \mathrm{~s}$. Explain a simple method to achieve this and show the settings of relevant registers. What is the value of the interrupt register just after such an interrupt?
(b) In a design PIC 16 F 877 microcontroller is to be used.
(i) When using its Analog to Digital Converter (ADC), it is required to configure it to have external voltage reference, four analog input channels, a clock source of $\frac{f_{O S C}}{8}$, input channel 1 selected and ADC turned on but not started converting. Show the settings of the relevant registers.
(3 marks)
(ii) When the conversion is started and running, show the changes in these registers.
(2 marks)
(iii) If an 8 MHz crystal oscillator is to be used, select a suitable option for ADCS 1 and $A D C S O$ bits in the $A D C O N 0$ register justifying the answer.
(3 marks)
(iv) The minimum acquisition time related to the ADC is defined as $20 \mu \mathrm{~s}$. State the importance of this figure and show how it is used in the program.

QUESTION FIVE (25 marks)

(a) The serial Digital to Analog Converter (DAC) shown in Figure-Q5 is required to communicate with the Synchronous Serial Port of a PIC 16F877 microcontroller.

			DIN = Data in
DIN		VDD	DOUT= Data out
K		vout	SCLK $=$ serial clock
			CS $=$ Chip select VDD $=$ Supply voltag
		REFIN	VOUT = Analog out
D		- AGND	VREFIN = Ref voltage in AGND = Analog ground

Figure-Q5
(i) Draw a block diagram to show how the interconnection of the DAC and the microcontroller is done. Show only the pins that are interconnected giving identification.
(6 marks)
(ii) Explain briefly how the data is transferred in broad terms between the two devices.
(9 marks)
(b) Assume that the microcontroller is running on a 8 MHz crystal oscillator. The DAC can transfer data at a maximum of 125 kHz .

Configure the microcontroller for SPI mode suitable to interconnect with the DAC. Among other typical settings it must also include the settings for the zero idle state of clock, data sampling at the middle of the bit period and the data transfers are on the rising edge of clock. Show the settings of the SSPCON, SSPSTAT and any other register involved in the configuration of SPI.
(10 marks)

PIC 16F84A

Fue Address			te Address
OOn	Indirect addr. ${ }^{\text {4 }}$	Indirect adar ${ }^{(1)}$	80 h
01 h	TMRO	OPTION REG	81 h
02h	PCL	PCL	82 n
03n	Status	Status	83 n
04n	FSR	FSR	84h
050	PORTA	TRISA	85\%
05n	PORTB	TRISB	86h
07h	-	-	87h
08\%	EEDATA	EECON1	88%
09n	EEADR	EECON2 ${ }^{(4)}$	89 n
OAn	PCLATH	PCLATH	BAn
0Bn	INTCON	NTCON	8 Bh
OCh			8 ch
	68 General Purpose Registers (SRAM)	$\begin{aligned} & \text { Mapped } \\ & \text { (accesses) } \\ & \text { in Bank } 0 \end{aligned}$	
4Fh			CFh
50 n			DOn

STATUS REGISTER (ADDRESS 03h, 83h)

RN-0	RN-0	RN-0	R-1	R-1	RN-x	RW-x	RN-x
IRP	RP1	RP0	$\overline{\text { TO }}$	$\overline{\mathrm{PD}}$	Z	DC	C
bit 7							

Unimplemented: Maintain as '
RPO: Register Bank Select bits (used for direct addressing)
$01=$ Bank 1 (80 h - FFh)
$00=$ Bank $0(00 \mathrm{~h}-7 \mathrm{Fh})$
TO: Time-out bit
$1=$ After power-up, cLrwDT instruction, or SLEEP instruction
$0=$ A WDT time-out occurred
PD: Power-down bit
1 = Atter power-up or by the ccrwor instruction
$0=$ By execution of the sLeep instruction
z: Zero bit
$1=$ The result of an arithmetic or logic operation is zero
$0=$ The result of an arithmetic or logic operation is not zero
DC: Digit cartybortow bit (ADDFF, ADDLW, suBLh, suBFe instructions) (for borrow, the polarity is reversed)
1 = A camy-out from the 4 th low order bit of the result occurred
$0=$ No carry-out from the 4th low order bit of the result
C. Carrybortow bit (ADDFF, RDDLF, SUELW, subme instructions) (for borrow, the polarity is reversed)
$1=$ A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note: A subtraction is executed by adding the wo's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

OPTION REGISTER (ADDRESS B1h)

RWW-1	RN-1						
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PSO
bit 7							

RBPU: PORTB Pull-up Enable bit
$1=$ PORTB pull-ups are disabled
$0=$ PORTG pudl-ups are enabled by individual port latch values
INTEDG: Interrupt Edge Select bit
$1=$ interrupt on rising eadge of RBOINT pin
$0=$ interrupt on falling edge of RBOINT pin
TOCS: TMRO Clock Source Select bit
$i=$ Transition on RA4/TOCKI pin
$0=$ internal instruction cyde clock (CLKOUT)
TOSE: TMRO Source Edge Select bit
$1=$ increment on high-to-low transition on RA4/TOCK1 pin
$0=$ Increment on low-to-high transition on RAA/TOCKI pin
PSA: Prescater Assignment bit
$1=$ Prescaler is assigned to the WOT
$0=$ Prescaler is assigned to the Timer0 module
PS2:PS0: Prescoler Rate Select bits
Bit value TMR0 Rate WDT Rate

000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 128$

INTCON REGISTER (ADDRESS 08h, 8Bh)

RN-0	RN-X						
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
bit 7							

GIE: Global Interrupt Enable bit
1 = Enables all umasked interrupts
$0=$ Disables all interrupts
EEIE EE Write Complete Interupt Enable bit
$1=$ Enables the EE Write Complete interupts
$0=$ Disables the EE Write Complete interrupt
TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
$0=$ Disables the TMR0 interrupt
INTE: RBOINT Extemal Interrupt Enable bit
$1=$ Enables the RBO/INT external interrupt $0=$ Disables the RBO/INT external interupt
REIE: RB Port Change Interrupt Enable bit
$1=$ Enables the RB port change interrupt
$0=$ Disables the RB port change interrupt
TOIF: TMR0 Overflow Interrupt Flag bit
$1=T M R O$ register has overllowed (musi be cleared in sofware)
$0=$ TMR0 register did not overfow
INTF: RBO/NT Extemal interrupt Flog bit
$1=$ The RBO/ANT extemal interrupt occurred (must be cleared in software)
$0=$ The RBO/INT external interrupt did not occur
RBIF: RB Port Change internupl Flag bit
$1=$ At least one of the RB7.RB4 pins changed state (must be cleared in software)
$0=$ None of the RB7:RB4 pins have changed state

16F84A and 16F877

Mnemonic， Operands		Description	Cycles	14－Eit Opeode				Status Affected	Notes	
		MSb				L．sb				
BYTE－ORIENTED FILE REGISTER OPERATIONS										
ADOWF	1．d		Add W and t	1	00	3111	dfit	fiff	C，DC．Z	1，2
ANDWF	f．d	AND W with 1	1	00	0101	afff	ffit	Z	1.2	
CLRF	1	Clear ！	1	03	0001	－fff	Efic	z	2	
CLRW	－	Clear W	1	00	0001	0xor	x000x	2		
COMF	1，d	Complement f	1	00	1001	detif	ciff	2	1.2	
DECF	f．d	Decrement 1	1	00	$\bigcirc 011$	defit	tirt	2	1，2	
DECFS 2	f_{8}	Decrement i．Skp it 0	1 （2）	00	1011	deff	ffit		1，2，3	
INCF	f． d	increment 1	1	00	1010	dr：t	feft	z	1，2	
incrsz	f． 6	increment f，skip to	1 （2）	00	1111	afte	efif		1，2，3	
forwF	t． 6	inclusive OR W with f	1	00	0100	dfer	Effe	z	1,2	
MOVF	1， 0	Move I	1	00	1000	dffe	Cfict	z	1.2	
MOVWF	1	Move W fo t	1	00	0000	If：I	efer			
NOP	－	No Operation	1	00	0000	0xxo	0000			
RLF	f，d	Rotate Left ftrough Cary	1	00	1101	atfr	fift	c	1，2	
RRF	f，d	Rotate Right 1 through Carry	1	00	1100	dest	fiff	c	1，2	
SUBWF	1， $\mathrm{d}^{\text {d }}$	Subtract W from 1	1	03	0010	afte	fitit	c，DC，Z	1.2	
SWAPF	f．${ }^{\text {d }}$	Swap nibbles in 1	1	00	1110	diz：	ffit		1.2	
XORWF	1．d	Exclusive OR W with 1	1	00	0110	dext	1115	z	1.2	
BIT－ORIENTED FILE REGISTER OPERATIONS										
BCF	f，b	Bit cleari	1	01	000b	bfte	Exif		1.2	
BSF	f． 6	Bit Set 1	1	01	a1tb	bfit	Etif		1.2	
BTFSC	f，b	Et Test I，Skip il Clear	1 （2）	01	100b	biti	1：ささ		3	
BTFSS	f，b	Brit Test I，Skip it Set	1 （2）	01	11 bb	とREt	titi		3	
LITERAL ANO CONTROL OPERATIONS										
ADDIW	k	Add literat and W	1	11	$111 x$	kke：	kakk	C，DC，Z		
ANOLW	k	ANO literal with W	1	11	1001	ktkk	kbkk	Z		
CALL	k	Call subroutine	2	10	Onkr	rekek	krak			
CLRWOT	－	Clear Watchdog Timer	1	00	0000	0110	0100	TO，PO		
goto	k	Go to address	2	10	1 xk	kkkk	kkik			
ORLW	k	Inclusive OR literal win W	1	12	1500	kkik	FW k	2		
MOVIW	k	Move fiteral to W	1	11	00cx	EKk	kbrk			
RETFIE	－	Relum from internypt	2	00	0000	0000	1001			
RETLW	k	Relum with iteral in W	2	11	0120．	Nratk	k L Lk			
RETURN	－	Relurn from Subroutine	2	00	2000	0000	1000			
SLEEP	－	Go into standby mode	1	00	0000	0150	0011	TO．PD		
SUBILW	k	Subtract W from literal	1	11	110 x	kras	k．kkr	C，DC， 2		
XORLW	k	Exclusive OR literal with W	1	11	1010	kuct	kkkr	2		

 on the pins themselves．For example，it the data latch is＇ 1 ＇for a pin configured as input and is driven low by an extemal device，the data will be written back with a＇or．
2：If this instruction is executed on the TmR0 register（and，where applicable，$\alpha=1$ ），the prescater will be cleared if assigned to the Timero Module．
3．II Program Counter（PC）is modified or a conditionat test is true，the instruction requires two cycles．The second cycle is execuled as a wop

Pin Diagram

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	RN-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D $\bar{A} A$	P	S	R \bar{N}	UA	BF
BIt 7							

SMP: Sample bit
SPI Master made:
1 = input data sampled at end of data output time
$0=$ input data sampled at middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in slave mode
In $1^{2} \mathrm{C}$ Master or Slave mode:
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
$0=$ Slew rate control enabled for high speed mode (400 kHz)
CKE: SPI Clock Edge Select (Figure 9-2, Flgure 9-3 and Figure 9-4)
SPI mode:
For CKP $=0$
1 = Data transmitted on rising edge of SCK
$0=$ Data transmitted on falling edge of SCK
For CKP = 1
1 = Data transmitted on falling edge of SCK
$0=$ Data transmitted on rising edge of SCK
In $1^{2} C$ Master or Slave mode:
1 = input leveis conform to SMBus spec
0 = input leveis conform to $1^{2} \mathrm{C}$ specs
DIA: Data/Address bit ($1^{2} \mathrm{C}$ mode only)
$1=$ Indicates that the last byte received or transmitted was data
$0=$ Indicates that the last byte received or transmitted was address
P: STOP bi
${ }^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a STOP bit has been detected last (this bit is ${ }^{\circ} 0^{\prime}$ on RESET)
$0=$ STOP bit was not detected last
S: START bit
($1^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a START bit has been detected last (this bit is ' 0 ' on RESET)
$0=$ START bit was not detected last
RIW: Read/Write bit Information (${ }^{2} \mathrm{C}$ mode only)
This bit holds the RW bit information following the last address match. This bit is oniy valid from the address match to the next START bit, STOP bit or not ACK bit.
in $P^{2} C$ slave mode:
$I=$ Read
$0=$ White
In 1^{2} C Master mode:
$1=$ Transmit is in progress
$0=$ Transmi is not in progress
Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.
UA: Update Address (10 -bit $1^{2} \mathrm{C}$ mode only)
$1=$ Indicates that the user needs to update the address in the SSPADD register
0 = Address does not need to be updated
BF: Bufter Full Status bit
Receive (SPI and F'C modes):
1 = Receive complete, SSPBUF is full
$0=$ Receive not complete. SSPBUF is empty
Transmit 1^{2} C mode onM:
$1=$ Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full
$0=$ Data transmit complete (does not include the $\overline{A C K}$ and STOP bits), SSPBUF is empty

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

| RNW-0 | R/W-0 | RN-0 | RN-0 | RNW-0 | RNW-0 | RNW-0 | RNN-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | |

WCOL: Write Collision Detect bit

Master mode:
$1=\mathrm{A}$ write to SSPBUF was attempted white the 12 C conditions were not valid
$0=$ No collision
Slave mode:
$1=$ SSPBUF register is written while still transmitting the previous word (must be cleared in soltware)
$0=$ No coltision
SSPOV: Receive Overflow Indicator bit
in SPI mode:
1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overfows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.)
$0=$ No oveflow
In $I^{2} \mathrm{C}$ mode:
1 = A byte is received while the SSPGUF is hoiding the previous byte SSPOV is a "don't care" in Transmit mode. (Must be cleared in software)
$0=$ No overflow
SSPEN: Synctronous Serial Port Enable bit
In SPI mode.
When enabled, these pins must be properly configured as input or output
$1=$ Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
$0=$ Disables serial port and configures these pins as I/O port pins
$\ln 1^{2} \mathrm{C}$ mode,
When enabled, these pins must be property configured as input or output
1 = Enables the sertal port and configures the SDA and SCL pins as the source of the serial port pins
$0=$ Disables serial port and configures these pins as llo port pins
CKP: Clock Polarity Select bit
In SPI mode:
1 = Idle state for clock is a high level
$0=$ Idle state for clock is a low level
in $1^{2} C$ slave mode:
SCK release control
1 = Enable clock
$0=$ Holds clock low (clock stretch). (Used to ensure data setup time.)
$\ln 1^{2} \mathrm{C}$ Master mode:
Unused in this mode
SSPM3:SSPMO: Synchronous Serial Port Mode Select bits
$0000=$ SPI Master mode, clock $=$ Fosci4
$0001=$ SPI Master mode, dock $=$ Fosc/ 16
$0010=$ SPI Master mode, clock $=$ Foscl64
$0011=$ SP1 Master mode, clock $=$ TMR2 output/2
$0100=S P I$ Slave mode, clock $=S C K$ pin. SS pin control enabled
$0101=$ SPI Slave mode, clock $=$ SCK pin. $\overline{S S}$ pin control disabled. $\overline{S S}$ can be used as vO pin.
$0110=1^{2} \mathrm{C}$ Slave mode, 7 -bit address
$0111=1^{2} \mathrm{C}$ slave mode, 10 -bit address
$1000=1^{2} \mathrm{C}$ Master mode, clock $=$ Fosc $/\left(4^{*}(S S P A D D+1)\right)$
$1011=1^{2} \mathrm{C}$ Firmware Controlled Master mode (siave idle)
$1110=1^{2} \mathrm{C}$ Fimware Controled Master mode, 7 -bit address with START and STOP bit interrupts enabled $1111=1^{2}$ C Firmware Controlled Master mode, 10 -bit address with START and STOP bit interrupts enabled
1001. 1010. 1100, $1101=$ Reserved

PIC 16F877
PIC16F877/876 REGISTER FILE MAP

ADCON0 REGISTER (ADDRESS: 1Fh)

| RNW-0 | RN-0 | RW-0 | RN-0 | RW-0 | RN-0 | U-0 | RN-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADCS1 | ADCS0 | CHS2 | CHS1 | CHSO | GOIOONE | - | ADON |
| bit 7 | | | | | | | |

ADCS1:ADCS0: AD Conversion Clock Select bits
$00=\mathrm{Fosc} / 2$
$01=$ Fosc $/ 8$
$10=$ Fosct 32
$11=$ FRC (clock derived from the internal AD module RC oscillator)
CHS2:CHSO: Analog Channel Select bits
$000=$ channel $0,($ RAO/ANO $)$
$001=$ channel 1, (RA1/AN1)
$010=$ channel 2, (RA2IAN2)
$011=$ channel 3 , (RA3/AN3)
$100=$ channel 4, (RA5IAN4)
$101=$ channel $\left.5,(\text { REO/AN5 })^{19}\right)$
$110=$ channel 6, (RE1/AN6) ${ }^{14}$
$111=$ channel 7, (RE2/AN7) ${ }^{(1)}$
GOIDONE: AD Conversion Status bit
I $A D O N=1$:
1 = AD conversion in progress (setting this bit starts the AD conversion)
$0=A D$ conversion not in progress (this bit is automatically cleared by hardware when the ADD conversion is complete)
Unimplemented: Read as ' 0 '

ADON: AD On bit

I = AD converter module is operating
$0=$ AD converter module is shut-off and consumes no operating current

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	RN-0	U-0	RN-0	RW-0	RN-0	RN-0
ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							

ADFM: AD Result Format Select bit
1 = Right justified. 6 Most Significant bits of ADRESH are read as ' 0 '.
$0=$ Left justified. 6 Least Significant bits of ADRESL are read as ' 0 '.
Unimplemented: Read as ' 0 '
PCFG3:PCFG0: AD Port Configuration Control bits:

PCFG3: PCFGO	$\begin{gathered} \text { ANT } \\ \text { RE2 } \end{gathered}$	ANG ${ }^{(1)}$ RE1	$\begin{gathered} \text { AN5 } 5^{(4)} \\ \text { REO } \end{gathered}$	AN4 RA5	AN3 RA3	$\begin{aligned} & \text { AN2 } \\ & \text { RA2 } \end{aligned}$	AN1 RA1	$\begin{aligned} & \text { ANO } \\ & \text { RAO } \end{aligned}$	Vref*	VREf*	$\begin{aligned} & \text { CHANI } \\ & \text { Refs }{ }^{(2)} \end{aligned}$
0000	A	A	A	A	A	A	A	A	Voo	Vss	810
0001	A	A	A	A	VREF+	A	A	A	RA3	Vss	711
0030	D	0	D	A	A	A	A	A	VDD	Vss	50
0011	D	D	D	A	Vref +	A	A	A	RA3	Vss	$4 / 1$
0100	D	D	D	D	A	D	A	A	Vod	Vss	$3 / 0$
0101	D	D	0	D	Vref+	D	A	A	RA3	Vss	211
0118	D	D	D	D	D	D	D	D	VDD	Vss	010
1000	A	A	A	A	VREF +	Vref-	A	A	RA3	RA2	612
1001	D	D	A	A	A	A	A	A	VDO	Vss	610
1010	D	D	A	A	Vreft	A	A	A	RA3	Vss	$5 / 1$
1011	D	D	A	A	Vref+	Vref-	A	A	RA3	RA2	$4 / 2$
1100	D	D	D	A	Vref+	Vref-	A	A	RA3	RA2	312
1101	D	D	D	D	VREF+	VREF-	A	A	Ra3	RA2	212
1110	D	D	D	D	D	D	D	A	Vod	Vss	110
1111	D	D	D	D	Vref+	Vref-	D	A	RA3	RA2	$1 / 2$

$\mathrm{A}=$ Analog input $\mathrm{D}=$ Digital $/ / \mathrm{O}$

Note 1: These channels are not available on PIC16F873:876 devices.
2: This column indicates the number of analog channels available as AD inputs and the number of analog channels used as voltage reference inputs.

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as 0
$-n=$ Value at $P O R$	$' 1 '=B i t ~ i s ~ s e t ~$	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

