UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2014

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

.

THIS PAPER CONTAINS SEVEN (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) (i) Show the difference between Von-Neumann and Harvard architectures.

(2 marks)

(ii) Write the main features of RISC type microcontrollers.

(2 marks)

(iii) Indicate the peripheral modules available in PIC 16F84A and PIC 16F877.

(3 marks)

(b) A few lines of a program using 16F84A is given in Figure-Q1. Assume it is being used with a 4 MHz crystal oscillator.

movlw	b'11000110'
movwf	option_reg
bcf	status,5
Fi	oure-01

(i) Explain the three statements shown in Figure-Q1.

(3 marks)

(ii) What is the clock frequency at the timer input?

(3 marks)

(iii) Calculate the time it will take for each overflow of the timer.

(4 marks)

(iv) An application requires the timer to overflow in each 20ms when using a crystal oscillator as the device clock. Assume that the crystals available for the selection are 1MHz, 1.843MHz, 3.277MHz and 3.579MHz. Select a suitable crystal justifying your answer. Modify the assembly instructions in Figure-Q1 to facilitate your selection.

(8 marks)

QUESTION TWO (25 marks)

Two program segments in a microcontroller program are shown in Figure-Q2(a) and in Figure-Q2(b).

(a) Consider the program shown in Figure-Q2(a).

(i) Which part of this program is a subroutine?

(3 marks)

 (ii) List the contents of the program counter and the changes in stack memory from the execution of 'begin instruction' to the instruction following the 'call'.

(5 marks)

- (b) A subroutine used to provide a delay is shown in Figure-Q2(b). Assume that a 16F84A microcontroller clocked with a 10MHz crystal runs this program.
 - (i) Calculate the actual delay time that the program will produce.

(6 marks)

(ii) Show how you can obtain a delay as close as possible to $400\mu s$ by changing only a single instruction of this routine.

(3 marks)

(iii) Modify this routine to produce a time delay as close as possible to 10ms. (8 marks)

QUESTION THREE (25 marks)

A 16F84A microcontroller based simple environment control system is to be designed for a green house in a plant nursery. The system will have the following components having TTL compatible inputs and outputs.

Temperature sensor: Returns '0' if the temperature falls below a minimum safe limit.

Moisture sensor: Returns'0' if the moisture is less than a minimum value.

Light sensor: Returns '0' if the light level falls below a minimum value.

Controlled components: A water sprinkler, heater and lights

- (i) Draw a circuit showing the microcontroller pins used and the connections to the sensors and the controlled components. Sensors and the controlled components can be shown as blocks.
 (5 marks)
- (ii) Explain briefly the control logic you are going to implement by the microcontroller program.

(7 marks)

(iii) Draw a flowchart for the microcontroller program.

(9 marks)

(iv) Write the assembly instructions which configure the ports as required by your design.

(4 marks)

QUESTION FOUR (25 marks)

(a) In a 16F84A microcontroller program, the INTCON register is set to B0h.

(i) Explain the INTCON register settings.

(2 marks)

 (ii) At some point in the program execution, the INTCON register showed a value of 32h. Explain the situation described by the INTCON register.

(2 marks)

- (iii) In the case of an interrupt, state the events that will take place in the program execution. Indicate the essential features to be included in an interrupt service routine.
- (iv) Assume that the microcontroller runs on a 8MHz crystal oscillator. The system has to produce a regular interrupt in every 512µs. Explain a simple method to achieve this and show the settings of relevant registers. What is the value of the interrupt register just after such an interrupt?

(5 marks)

(6 marks)

- (b) In a design PIC 16F877 microcontroller is to be used.
 - When using its Analog to Digital Converter (ADC), it is required to configure it to have external voltage reference, four analog input channels, a clock source of <u>fosc</u>, input channel 1 selected and ADC turned on but not started converting. Show the settings of the relevant registers.

(3 marks)

(ii) When the conversion is started and running, show the changes in these registers.

(2 marks)

(iii) If an 8MHz crystal oscillator is to be used, select a suitable option for ADCS1 and ADCS0 bits in the ADCON0 register justifying the answer.

(3 marks)

(iv) The minimum acquisition time related to the ADC is defined as 20µs. State the importance of this figure and show how it is used in the program.

(2 marks)

QUESTION FIVE (25 marks)

(a) The serial Digital to Analog Converter (DAC) shown in Figure-Q5 is required to communicate with the Synchronous Serial Port of a PIC 16F877 microcontroller.

Figure-Q5

 Draw a block diagram to show how the interconnection of the DAC and the microcontroller is done. Show <u>only</u> the pins that are interconnected giving identification.

(6 marks)

(ii) Explain briefly how the data is transferred in broad terms between the two devices.

(9 marks)

(b) Assume that the microcontroller is running on a 8MHz crystal oscillator. The DAC can transfer data at a maximum of 125kHz.

Configure the microcontroller for SPI mode suitable to interconnect with the DAC. Among other typical settings it must also include the settings for the zero idle state of clock, data sampling at the middle of the bit period and the data transfers are on the rising edge of clock. Show the settings of the SSPCON, SSPSTAT and any other register involved in the configuration of SPI.

(10 marks)

PIC 16F84A

File Addre	SS	F	ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr.(1)	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	-	-	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
06h	INTCON	INTCON	8Bh
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch
4Fh 50h			CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7		1					bit Q

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

- TO: Time-out bit
- 1 = After power-up, CLRWDT instruction, or SLEEP instruction
- e = A WDT time-out occurred
- PD: Power-down bit
- 1 = After power-up or by the CLRWDT instruction0 = By execution of the SLEEP instruction
- Z: Zero bit
- 1 = The result of an arithmetic or logic operation is zero
- 0 = The result of an arithmetic or logic operation is not zero
- DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)
- 1 = A carry-out from the 4th low order bit of the result occurred
- 0 = No carry-out from the 4th low order bit of the result

C: Carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note:
 - A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin

TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin

PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits

Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1.256	1:128

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
bit 7		M					bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts 0 = Disables the EE Write Complete interrupt

TOIE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt

INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt o = Disables the RB port change interrupt

T01F: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software) o = TMR0 register did not overflow

INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

16F84A and 16F877

Mnemo	onic,	B			14-Bit (Opcode		Status	
Operands Description		Cycles	MSb			LSb	Affected	Notes	
		BYTE-ORIENTED FILE	REGISTER OPE	RATIO	NS				
ADDWF	f, đ	Add W and f	1	00	0111	dfff	tttt	C,DC,Z	1,2
ANDWF	f, đ	AND W with f	1	00	0101	dfif	tttt	Z	1,2
CLRF	f	Clear f	1	00	0001	11111	EEEE	Z	2
CLRW	-	Clear W	1	00	0001	0 22 00	xxxx	z	
COMF	f, d	Complement f	1	00	1001	1110	tttt	z	1,2
DECF	f, đ	Decrement f	1	00	3011	dfff	tttt	Z	1,2
DECFSZ	f, d	Decrement I, Skip if 0	1 (2)	00	1011	diff	ffff		1,2,3
INCF	f, d	increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, đ	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, đ	inclusive OR W with f	1	00	0100	dfff	ffff	z	1,2
MOVF	f, đ	Move f	1	00	1000	dfff	ffff	z	1,2
MOVWF	1	Move W to f	1	00	0000	1666	2222		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, đ	Rotate Left f through Carry	1	00	1101	attt	ffff	l c	1,2
RRF	f, d	Rotate Right I through Carry	1	00	1100	dfff	tttt	С	1,2
SUBWF	1, đ	Subtract W from 1	1	00	0010	arrr	ffff	C,DC,Z	1,2
SWAPF	t, d	Swap nibbles in 1	1	00	1110	diii	ffif		1,2
XORWF	t d	Exclusive OR W with f	1	00	0110	dfff	iii	z	1.2
		BIT-ORIENTED FILE		RATIO	NS				· · · · · · · · · · · · · · · · · · ·
BCF	f, b	Bit Clear f	1	01	00bb	bfff	tttf		1,2
BSF	f, b	Bit Set f	1	01	0166	bfff	ffff		1.2
BTFSC	f, b	Bit Test I, Skip if Clear	1 (2)	01	1055	bfff	titi		3
8TFSS	f, b	Bit Test I, Skip if Set	1 (2)	01	11bb	bfff	fiff		3
		LITERAL AND CO	NTROL OPERAT	IONS					
ADDLW	k	Add liferal and W	1	11	111x	kkkk.	kkkk	C,DC,Z	
ANDLW	ĸ	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	ĸ	Call subroutine	2	10	ORKE	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		1
IORLW	ĸ	Inclusive OR literal with W	1	11	1000	kkak	kkkk	Z	1
MOVLW	ĸ	Move literal to W	1 f	11	00xx	kkkk	k kkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	ĸ	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000	1	
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	11 0x	kkkk	kkkk	C,DC,Z	
XORLW	K	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVE FORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.
 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is

executed as a NOP.

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	s	R/W	UA	BF
it 7	·				<u>,</u> ,		bit O
MP: Samp	le hit						
PI Master I	node:						
. = input da	la sampled at	end of data o	utput time				
) = Input da	ta sampled at	middle of dat	a output time				
SPI Slave m	ode:						
SMP must b	e cleared whe	en SPLIS USeo	i in slave moo	e			
I = Slew ra	te control disa	ue. Ibled for stand	tard speed m	ode (100 kH	z and 1 MHz)		
) = Siew ra	te control ena	bled for high	speed mode (400 kHz)	2 41/4 1 11/1 (2)		
KE: SPI C	lock Edge Sel	ect (Floure 9-	2. Figure 9-3	and Figure 9	9-4)		
SPI mode:		out (r iguin o	, , , <u>g</u>	and i ignir i			
For CKP = 0)						
l = Data tra	nsmitted on ri	sing edge of S	SCK				
) = Data tra	nsmitted on fa	Illing edge of	SCK				
-or CKP = 1	nomitted on fr	lling odgo of	PCV				
) = Data tra	nsmitted on ri	sing edge of sing	SCK				
n I ² C Mast	er or Slave mo	de:					
1 = Input lev	rels conform t	o SMBus spe	c				
0 = Input lev	els conform t	o I ² C specs					
D/A: Data/A	ddress bit (I ² 0	c mode only)					
1 = Indicate	s that the last	byte received	l or transmitte	d was data			
0 = Indicate	s that the last	byte received	l or transmitte	d was addre	ess		
P: STOP bit							
(I ² C mode c	only. This bit is	cleared when	n the MSSP n	nodule is dis	abled, SSPEN	is cleared.)	
1 = Indicate	s that a STOP	bit has been	detected last	(this bit is 'C)' on RESET)		
0-310P0	iit was not det	etieu iast					
S: START D	ll This hit is		a the MCCD -	naduto in dia	abled CODEN	lia alcaradì	
(ITC INDOE C 1 = Indicate	e that a STAE	T hit has hee	n detected la	nouule is uis at (this hit is	In' on DESET	ns cleared.)	
0 = START	bit was not de	tected last	ii deleacu ia:	si (una vir ia	U UNRESET)		
RM. Dead	Minite bit Infor	mation (i ² C m	ode only)				
This bit hol	de the RM h	it information	following the	ast addres	ss match This	; hit is only y	valid from the
address ma	itch to the nex	t START bit	STOP bit or n	ot ACK bit.		2 Dit 10 Only 1	
In I ² C Slave	e mode:						
1 = Read							
0 = Write							
1 = Tranem	<u>er mode:</u> if is in progres						
0 = Transm	it is not in progres	aress					
Logical OR	of this bit with	SEN, RSEN	PEN, RCEN	, or ACKEN	will indicate if	the MSSP is i	n IDLE mode
		~					

1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated

2

BF: Buffer Full Status bit <u>Receive (SPI and I²C modes)</u>: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty <u>Transmit (I²C mode only)</u>: 1 = Data transmit in progress (does not include the <u>ACK</u> and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the <u>ACK</u> and STOP bits), SSPBUF is empty

<u>PIC 16F877</u>

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPMO
bit 7				h	,		bit 0
WCOL: Writ	e Collision De	tect bit					
Master mod	<u>e:</u> 						
1 = A write 1	0 SSPBUF wa	as attempted	while the 12C	conditions we	ere not valid		
Slave mode							
1 = SSPBU	<u>.</u> F register is w	ritten while st	ill transmitting	g the previous	word (must t	be cleared in	
software	e)				•		
0 = No coti:	sion						
SSPOV: Re	ceive Overflo	w Indicator bi	t				
1 = A new b	<u>:</u> Me is receiver	twhile SSDRI	IF holds orev	ious data. Dat	a in SSPSD is	s lost on over	fow in Slave
mode, t	he user must	read the SSP	BUF, even if	oniy transmitti	ng data, to av	oid overflows	s. In Master
mode, ti	he overflow bi	t is not set, si	nce each ope	eration is initia	ted by writing	to the SSPB	UF register.
(Must b	e cleared in so	oftware.)					
0 = NO OVer in l^2C mode	now						
1 = A byte is	s received whi	le the SSPBU	IF is holding t	he previous by	te. SSPOV is	a "don't care	e" in Transmit
mode. (Must be clear	ed in software	≥_)				
0 = No over	flow						
SSPEN: Syl	nchronous Se	rial Port Enab	le bit				
In SPI mode), Iad these pine	e muct he pro	oody configur	red se input o	r mitmit		
1 = Enables	serial port an	id configures	SCK, SDO, S	SDI. and SS a	s the source of	of the serial p	ortpins
0 = Disable	s serial port a	nd configures	these pins a	s I/O port pins			
In I ² C mode	5						
When enab	led, these pins	s must be pro	perty configu	red as input o	r output as the source	a of the cerial	nort nine
0 = Disable	s serial port a	nd configures	these pins a	s I/O port pins			port pais
CKP: Clock	Polarity Sele	ct bit	-				
In SPI mode	<u>e:</u>						
1 = Idle stat	le for clock is	a high level					
0 = 1010 stat	ie Tor Clock is : mode:	a low level					
SCK releas	e control						
1 = Enable	clock						
0 = Holds c	lock low (cloc	k stretch). (Us	sed to ensure	: data setup tii	ne.)		
Unused in f	<u>er mode:</u> his mode						
CCDM3-CC	PNO: Synchr	noue Sorial (ont Mode Se	loct hits			
0000 = SP	Master mode	e, clock = Fos	-or mode se ic/4				
0001 = SP	I Master mode	e, clock = Fos	ic/16				
0010 = SP	I Master mode	e, clock = Fos	ic/64				
0011 = SP 0100 = SP	i Master mode	2, CIOCK = 1 Mil CIOCK = SCK	nin SS nin r	ontrol enabler	1		
0101 = SP	i Slave mode,	clock = SCK	pin. SS pin c	ontrol disable	d. SS can be	used as I/O p	an.
$0110 = I^2C$	Slave mode,	7-bit address					
$0111 = 1^{2}C$	Slave mode, Master mode	10-bit addres	is 0114 * (99D)	400+1)			
$1011 = l^2C$	Firmware Co	ntrolled Mast	er mode (slav	ve idle)			
$1110 = I^2C$	Firmware Co	ntrolled Maste	er mode, 7-bi	t address with	START and	STOP bit inte	mupts enabled
$1111 = I^2C$	Firmware Co	ntrolled Maste	er mode, 10-b	it address with	START and	STOP bit inte	rrupts enabled
1001, 10	10, 1100,	$1101 \approx \text{Rese}$	IVCU				

PIC16F877/876 REGISTER FILE MAP

,	File Address		File Address		File Address		File Addres
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(")	180h
TMRO	01h	OPTION_REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		1871
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		1885
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		1891
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	1841
INTCON	06h	INTCON	8Bh	INTCON	10Bh	INTCON	1884
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	1801
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	180
TMR1L	0Eh	PCON	8Eh	FEDATH	10Eh	Reserved ⁽²⁾	18FI
TMR1H	OFh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18F
T1CON	10h		90h		110n		1901
TMR2	11h	SSPCON2	91h		111h		1911
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		19/1
CCPR1L	15h		95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose	118h	Purpose	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	100
RCREG	1Ah		9Ah		11Ah	10 09100	194
CCPR2L	1Bh		9Bh		116h		108
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		190
ADRESH	1Eh	ADRESL	9Eh		11Eh		100
ADCON0	1Fh	ADCON1	9Fh		11Fh		105
	20h		A0h		120h		140
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EED	General Purpose Register 80 Bytes	1655	General Purpose Register 80 Bytes	1EP
	7Eb	accesses 70h-7Fh	FON	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1FD)
Bank 0	1 7611	Bank 1	rrn	Bank 2	1740	Bank 3	1FFI

Unimplemented data memory locations, read as '0'. * Not a physical register.

Note 1: These registers are not implemented on the PIC16F876. 2: These registers are reserved, maintain these registers clear.

ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
bit 7							bit 0

ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8 10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)⁽¹⁾ 110 = channel 6, (RE1/AN6)⁽¹⁾ 111 = channel 7, (RE2/AN7)⁽¹⁾

GO/DONE: A/D Conversion Status bit

<u>If ADON = 1:</u>

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM				PCFG3	PCFG2	PCFG1	PCFG0
bit 7			,				bit 0

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	A	A	A	A	A	A	A	A	Voo	Vss	8/0
0001	A	A	A	A	VREF+	A	Α	А	RA3	Vss	7/1
0010	D	D	D	A	Α	A	Α	A	Voo	Vss	5/0
0011	D	D	D	A	VREF+	A	Α	A	RA3	Vss	4/1
0100	D	D	D	D	A	D	Α	A	Voo	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	A	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	V5S	0/0
1000	A	A	A	А	VREF+	VREF-	A	A	RA3	RA2	6/2
1001	D	D	A	A	A	A	A	A	VDD	Vss	6/0
1010	D	D	A	A	VREF+	A	A	A	RA3	Vss	5/1
1011	D	D	A	A	VREF+	VREF-	A	A	RA3	RA2	4/2
1100	D	D	D	A	VREF+	VREF-	A	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	A	A	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

 This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown