# UNIVERSITY OF SWAZILAND <br> FACULTY OF SCIENCE \& ENGINEERING <br> <br> DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING 

 <br> <br> DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING}

MAIN EXAMINATION DECEMBER 2013

| TITLE OF PAPER: | ELECTROMAGNETIC FIELDS II |
| :--- | :--- |
| COURSE CODE: | EE441 |
| TIME ALLOWED: | THREE HOURS |

INSTRUCTIONS:

1. Answer any four (4) questions
2. Each question carries 25 marks.
3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## Question 1

Use a shorted stub to match the load impedance $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 45 \Omega$ to a $75 \Omega$ transmission line. (A smith chart is attached)
(25 marks)

## Question 2

Use the Smith chart to determine the input impedance of the two line configuration shown in Figure 2. Note that the characteristic impedance of line 1 is a $100 \Omega$ and that of line 2 is $50 \Omega$.
(25 marks)


Figure 2

## Question 3

The electric field of a uniform plane wave propagating in free space is given by

$$
\widetilde{\mathrm{E}}=(\hat{\mathrm{x}}+j 2 \hat{\mathrm{y}}) 15 e^{-j \frac{\pi z}{6}}
$$

Determine
a) the magnetic field $\widetilde{\mathrm{H}}$, and
b) the direction of the electric field intensity at $\mathrm{z}=0$ plane at $\mathrm{t}=0.5$ and 10 ns .

## Question 4

The magnetic-field phasor of a uniform plane wave traveling downward in the direction $\widehat{z}$ in sea water is given by

$$
\hat{\mathbf{H}}=\hat{\mathbf{x}} 10 e^{-0.2 z} e^{-j 0.2 z}
$$

If $\sigma=4 \mathrm{~S} / \mathrm{m}$ and $\mathrm{z}=0$ is the water surface
Determine:
a) the expression for intrinsic impedance $\eta_{c}$, ( 6 marks)
b) the expression for the average power density $S_{a v}$,
(8marks)
c) the attenuation rate,
(3marks)
d) the depth at which the power density has been reduced by 40 dB ., and (3 marks)
e) the expression for $\mathrm{H}(\mathrm{z}, \mathrm{t})$.
(5 marks)

## Question 5

a) A coil consists of 100 turns of wire wrapped around a square frame of sides 0.4 m . The coil has its left hand corner placed on the origin with each of its sides parallel to the x - or y axis. Determine the induced emf across the open-circuited ends of the coil if the magnetic field is given by $B=\hat{z} \cos x \sin 2 y \cos 10^{3} t$ (T).
( 13 marks)
b) Write down, in both differential and integral forms, Maxwell's equations for the following laws Gauss's laws, Faraday's law and Ampere's law. (12 marks)
$\qquad$
$\qquad$


$\qquad$


