UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2013

TITLE OF PAPER:	ELECTROMAGNETIC FIELDS II
COURSE CODE:	EE441
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1

1

- 1. Answer any four (4) questions
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

...

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1

Question 1

Use a shorted stub to match the load impedance $Z_L = 60 + j45\Omega$ to a 75 Ω transmission line. (A smith chart is attached) (25 marks)

Question 2

Use the Smith chart to determine the input impedance of the two line configuration shown in Figure 2. Note that the characteristic impedance of line 1 is a 100 Ω and that of line 2 is 50 Ω . (25 marks)

Figure 2

Question 3

The electric field of a uniform plane wave propagating in free space is given by

$$\widetilde{\mathbf{E}} = (\hat{\mathbf{x}} + j2\hat{\mathbf{y}})\mathbf{15}e^{-j\frac{\pi z}{6}}$$

Determine

a) the magnetic field $\,H$, and

b) the direction of the electric field intensity at z=0 plane at t= 0.5 and 10 ns.

(25 marks)

4

2

Question 4

The magnetic-field phasor of a uniform plane wave traveling downward in the direction \hat{z} in sea water is given by

$$\hat{\mathbf{H}} = \hat{\mathbf{x}} \mathbf{10} e^{-0.2z} e^{-j0.2z}$$

If $\sigma = 4$ S/m and z = 0 is the water surface

-							
11	α	٢O	rr	m	n	<u>م</u>	
ມ	c	ະບ	11	111		••	

a)	the expression for intrinsic impedance η_{c}	(6 marks)
b)	the expression for the average power density $S_{av},$	(8marks)
c)	the attenuation rate,	(3marks)
d)	the depth at which the power density has been reduced by 40	dB., and (3 marks)

e) the expression for H(z,t). (5 marks)

Question 5

a) A coil consists of 100 turns of wire wrapped around a square frame of sides 0.4m. The coil has its left hand corner placed on the origin with each of its sides parallel to the x- or y axis. Determine the induced emf across the open-circuited ends of the coil if the magnetic field is given by $B = \hat{z} \cos x \sin 2y \cos 10^3 t$ (T).

4

(13 marks)

b) Write down, in both differential and integral forms, Maxwell's equations for the following laws Gauss's laws, Faraday's law and Ampere's law. (12 marks)

..*

3

