FACULTY OF SCIENCE
 DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION JULY 2014

```
TITLE OF PAPER: Electrical Machines
COURSE CODE: EE 451
TIME ALLOWED: THREE HOURS
```

Student Name:	
Student Number:	

INSTRUCTIONS:

1. Answer all questions.
2. Give your answers on the question paper, and if more space is required, complete your answer on the back of the paper or in your answer book and mention about the place of your answer completion.
3. Put the question sheet inside the answer book upon submission of your exam paper.
(DON'T FORGET TO SUBMIT BOTH OF THE ANSWER BOOK AND QUESTION PAPER)
4. Marks for different questions are indicated on the beginning of the question.
5. Rough work maybe done in the examination answer book and crossed through.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

This paper starts at page 1 and ends at page 14

Question 1: Solve the following questions (23 marks)

a) The equivalent circuit impedances of a $20 \mathrm{kVA}, 2200 \mathrm{~V} / 220 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer to be determined. The open circuit test and short circuit test were performed and the following data were found. Calculate the impedances of approximate equivalent circuit referred to primary.
(Calculate $R_{C}, X_{M}, R_{\text {eqp }}, X_{\text {eqp }}$)

Open circuit results	Short circuit results
$V_{o c}=2200 \mathrm{~V}$	$V_{s c}=50 \mathrm{~V}$
$I_{o c}=0.2 \mathrm{~A}$	$I_{s c}=8 \mathrm{~A}$
$P_{o c}=40 \mathrm{~W}$	$P_{s c}=170 \mathrm{~W}$

b) $60 \mathrm{KVA}, 13800 \mathrm{~V} / 478 \mathrm{~V}$ (line to line) $\Delta-Y$ distribution transformers has equivalent impedance referred to the primary side $Z_{\text {eqp }}=100+j 600 \Omega$. Find the primary phase voltage at the source $V_{q p}$ and voltage regulation V_{R} assuming the transformer supplies rated load at 0.8 pf lagging.
c) $300 \mathrm{VA}, 200 \mathrm{~V} / 20 \mathrm{~V}$ transformer to be connected to form a step up autotransformer. Calculate the voltage at the high voltage side of the transformer V_{H}, maximum current at the high voltage side I_{H}, the current in low voltage side I_{L} and the output volt-ampere $S_{\text {out }}$.
(Calculate $V_{H}, I_{H}, I_{L}, S_{\text {out }}$)

Question 2: Solve the following questions (27 marks)

a) A 460 V (line to line) 50 Hz Y connected two pole synchronous generator. The generator has a synchronous reactance of 0.15Ω and armature resistance of 0.02 Ω. At full load the machine supplies 800 A at $\mathrm{pf}=0.85$ lagging. Calculate the internal voltage E_{A}, the power converted from mechanical to electrical $P_{\text {conv }}$, the output power from generator $P_{\text {out }}$ and sketch the phasor diagram.
b) A $400 \mathrm{~V} 50 \mathrm{KVA} 0.8 \mathrm{pf} \Delta$ connected 60 Hz synchronous motor has synchronous reactance 3Ω and negligible armature resistance. The friction and windage losses are 1.5 KW and core losses= 2 KW . Initially the shaft supplies 20 hp and pf of the machine is 0.8 leading. Calculate the armature current I_{A}, induced voltage E_{A} and sketch the phasor diagram. (Calculate I_{A}, E_{A})
c) A $40 \mathrm{hp}, 200 \mathrm{~V}, 1000 \mathrm{rev} / \mathrm{min} \mathrm{DC}$ shunt motor has armature resistance $R_{A}=0.3 \Omega$. The field winding has a total resistance $R_{F}+R_{\text {adj }}$ of 50Ω which produces no load speed at $1000 \mathrm{rev} / \mathrm{min}$. Calculate the speed of the motor expressed in rev/min n_{m}, the motor input power $P_{i n}$ and the motor induced torque $T_{\text {ind }}$ when the input current I_{L} is 100 A .
(Calculate: $n_{m}, P_{\text {in }}, T_{\text {ind }}$)

Question 3: Solve the following questions (14 marks)

A separately excited de generator, $172 \mathrm{KW}, 430 \mathrm{~V}, 400 \mathrm{~A}$ and 1800 rpm . The DC generator equivalent circuit and its magnetization curve are shown in the following figures. The machine has the following characteristics:
$R_{A}=0.1 \Omega, V_{F}=430 \mathrm{~V}, R_{F}=20 \Omega, R_{a d j}=0$ to 300Ω.

Field cumpan, A

If $R_{\text {adj }}=63 \Omega$ and the prime mover speed $=1200 \mathrm{rev} / \mathrm{min}$,
a) Calculate the no load generator voltage.
b) What is the terminal voltage V_{T} when 2Ω load connected?
(Calculate V_{T})
c) Calculate the induced voltage E_{A} to restore V_{T} at no load value.
(Calculate $E_{A}{ }^{\prime}$)
d) How much the field current and the field adjustable resistance needed to restore V_{T} at no load value? .
(Calculate I_{F}, R_{F})

Question 4: Solve the following questions (14 marks)

a) Explain briefly the principle of operation of the synchronous generator.

b) Indicate, for a given phase voltage and load current, will a more internal voltage E_{A} is needed for leading power factor load or lagging power factor load?
c) What is the effect of increasing mechanical load torque on the synchronous motor?

Question 5: Answer the following questions (22 marks)

a) Explain briefly the principle of operation of the DC motor.

b) How is possible to control the DC motor speed? Mention about two methods used. Indicate which method is used to control DC motor speed above base speed and which method used to control DC motor speed below base speed.
c) Draw the equivalent circuit of the cumulatively compounded motor. Mention the main advantages of the cumulatively compounded motor and the main disadvantage of the differentially compounded DC motor.
d) What is the effect of increasing the electrical load on the DC generator terminal voltage?
e) How it is possible to increase the DC generator terminal voltage?
f) How the terminal voltage in shunt DC generator will build up:
a) By the voltage source connected to the field winding
b) By the residual flux in the generator
g) When the number of series winding turns $N_{S E}$ of the cumulatively compounded DC generator is very large, the DC generator is
a) Flat compounded.
b) Under compounded.
c) Over compounded.
h) The under compounded DC generator will have
a) No load voltage $>$ full load voltage.
b) No load voltage $<$ full load voltage.
c) No load voltage $=$ full load voltage
i) The differentially compounded DC generator will have
a) Small drop in terminal voltage as load increased on the generator.
b) Large drop in terminal voltage as load increased on the generator.
c) No change in terminal voltage as load increased on the generator

