UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE & ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2013

TITLE OF PAPER:	POWER SYSTEM ANALYSIS AND OPERATION
COURSE CODE:	EE552
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1. Answer any four (4) questions

2. Each question carries 20 marks.

3. Marks for different sections are shown in the right-hand margin.

This paper has 6 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

The figure 1 below shows the one-line diagram of a three-bus power system. Bus 1 is the slack bus, bus 2 is a generator bus and bus 3 is a load bus. The line impedances are marked in per-unit in a 100MVA base. Answer the following:

- a) Determine the bus admittance matrix of the system. [3]
- b) For a load-flow analysis, state what the known and unknown variables are for each bus. [6]
- c) If the Newton-Raphson method is to be used to solve the system:
 - i. Write the equation for the real power at bus 2, and write also the equations for the real and reactive power at bus 3. [6]
 - ii. Write the elements of the following matrices:

$$\left[\begin{array}{c} \Delta \mathbf{P} \\ \Delta \mathbf{Q} \end{array}\right] = \left[\begin{array}{c} \mathbf{J} \end{array}\right] \left[\begin{array}{c} \Delta \delta \\ \Delta |\mathbf{V}| \end{array}\right]$$

Do not write the full expression of all the elements of the Jacobian matrix. Do, however, write the full expression for the first element of that matrix (J_{11}) . [5]

2

Question 2

a)			
-	i.	List three purposes of load flow calculations in a power	
		system.	[2]
	ii.	What makes the load flow problem non-linear? Explain the	e main
		steps of the Guass Seidel method.	[2]
b)	List 4	different types of faults in a 3phase power system.	[8]
c)	Explai power	n the usefulness of using the Per Unit (PU) system in the ar systems.	nalysis of [2]
d)	Why is units in	s it so important to optimally allocate power generations to n a power system?	various [5]
e)	What i	s meant by incremental cost in power generation?	[1]

Question 3

- a) Explain briefly how the method of symmetrical components may be used to represent a 3-phase system of unbalanced voltages. [4]
- b) Determine all three symmetrical components of a balanced set of currents with a positive phase sequence. [4]
- c) Show that there is no positive or negative sequence current in the neutral connection of a three phase system, that the neutral and zero sequence currents are proportional to each other, and that there cannot be a zero sequence current if there is no neutral connection. [4]
- d) Determine the phase voltages corresponding to the following sequencecomponents: [4]

3

The University of Swaziland - Department of Electrical & Electronic Engineering

 $\overline{V^{0}} = 20 \angle 80^{\circ} pu$ $\overline{V^{1}} = 100 \angle 0^{\circ} pu$ $\overline{V^{2}} = 30 \angle 180^{\circ} pu$

e) For the system shown in figure 3, sketch the zero sequence network. [4]

Figure 3: A simple power system

Question 4

Consider the simple three phase power system presented in figure 4.

Figure 4: Three phase power system

The system's sequence impedances, for a 100MVA base, are given in Table 4.

••••••	Positive	Negative	Zero
Generator	0.5	0.666	0.8
Transformer	0.3	0.3	0.3
Line	0.115	0.115	0.172

Table 4

a	appropriate sequence impedances in these circuits.	[3]
b) Show how these circuits should be linked for the evaluation of a single line to ground fault at bus bar B.	; [4]
C]	Determine the fault current.	[4]
ď	Determine the phase currents through the transmission line A-B.	[3]
e	Determine the phase currents through the generator (ignore phase sh across the windings; i.e. assume the phase shift is zero in this case).	ift [3]
f)	Determine the fault level at bus B.	[3]

Question 5

- a) Why do fuel cost characteristics in fossil-fuel units have minimum and maximum limits? [4]
- b) A power company has a mixed portfolio of hydro, nuclear, coal and gas based power generation units. Which units in your oppinion would be committed for base load operation and why?
- c) A power company has two units that can be engaged on economic dispatch. The operating costs of these units are given by

$C_1 = 350 + 8.5P_1 + 0.004P_1^2$	\$/hr	$300 \ MW \le P_1 \le 1200 \ MW$
$C_2 = 400 + 7.5P_2 + 0.008P_2^2$	hr	$400 \ MW \le P_2 \le 1000 \ MW$

Where P_1 and P_2 are in MW.

The University of Swaziland - Department of Electrical & Electronic Engineering

Determine the power output of each unit and the incremental operating cost(s), if the system is to operate at minimum cost to meet a load demand of 1000MW. Transmission losses are neglected. [12]

Question 6

Draw a per-unit diagram for the system whose one line diagram is shown in figure 6. The three phase and line-line ratings are as follows:

Generator G: 15MVA, 13.8 kV, X = 0.15 p.u. Motor M1: 5MVA, 13.2 kV, X = 0.15 p.u. Motor M2: 5MVA, 14.4 kV, X = 0.15 p.u. Transformer T1: 25MVA, 13.2/161 kV, X = 0.1 p.u. Transformer T2: 15MVA, 13.8/161 kV, X = 0.1 p.u.

Select a base of 100MVA and 161 kV in the transmission line.

[20]

Figure 6

6