UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2014

```
TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING
COURSE CODE: EE251
TIME ALLOWED: THREE HOURS
```

INSTRUCTIONS:

1. Answer all questions
2. Each question carries 20 marks.
3. Marks for different sections are shown in the right-hand margin.

This paper has 5 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

a) Determine the nodal voltages for the network of Figure 1 (a)

Figure 1(a)
b) For Figure 1(b) identify resistors which are connected in delta and then replace them with a Y equivalent. Redraw the circuit and then find the voltage across the current source marked 3A.
(10 marks)

Figure 1(b)

Question 2

a) Find the equivalent capacitance between terminals x and y for the circuit shown in Figure 2(a).
(4 marks)

Figure 2(a)

Question 2 (continued)

b) For the series circuit shown in figure 2 (b):
i. The resonance frequency f_{0},
ii. The quality factor Q_{s},
iii. The bandwidth BW,
iv. The half power frequencies,
v. The total impedance of the circuit at resonance

Figure 2(b)

Question 3

For the network of Figure 3:
a) Apply Thevenin's theorem the 80 mH inductor .
(6 marks)
b) Find the expression for the transient of the current i_{L} and the voltage v_{L} after the closing of the switch $\left(\mathrm{I}_{\mathrm{L}}=0\right)$
c) Draw the resultant waveforms for i_{L} and v_{L} on the same graph.

Figure 3

Question 4

For the series-parallel circuit shown in Figure 4
(a) Draw the magnetic circuit equivalent and label the flux densities $\left(\Phi_{1}, \Phi_{2}\right)$ and the reluctances (6 marks)
(b) If $\mu=6 \times 10^{-5}$ find $\mathrm{H}_{\text {bcde }}$
(3 marks)
(c) Use Ampere's circuital law to find H_{be}
(3 marks)
(d) Find the total flux density Φ_{T}
(3 marks)
(e) Find the current I

Figure 4

Question 5

A DC machine having the armature resistance of 0.30Ω and the field resistance of $R_{F}=500 \Omega$ operates as a motor at a speed of 1200 rpm with induced armature voltage $\mathrm{E}_{\mathrm{A}}=145 \mathrm{~V}$. If the speed is changed to 600 rpm the armature current $\mathrm{I}_{\mathrm{A}}=30 \mathrm{~A}$ and field current $\mathrm{I}_{\mathrm{F}}=2.5 \mathrm{~A}$. Find
a) the voltage applied to the field circuit
(3 marks)
b) the voltage V_{T} applied to the armature
c) the developed torque, and
d) the developed power.

