UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2014

TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING

COURSE CODE: **EE251**

TIME ALLOWED: **THREE** HOURS

INSTRUCTIONS:

- 1. Answer all questions
- 2. Each question carries 20 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 5 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

a) Determine the nodal voltages for the network of Figure 1 (a)

(10 marks)

b) For Figure 1(b) identify resistors which are connected in delta and then replace them with a Y equivalent. Redraw the circuit and then find the voltage across the current source marked 3A.
(10 marks)

Question 2

a) Find the equivalent capacitance between terminals x and y for the circuit shown in Figure 2(a).

Question 2 (continued)

- b) For the series circuit shown in figure 2 (b):
 - i. The resonance frequency f_o ,
 - ii. The quality factor Q_s ,
 - iii. The bandwidth BW,
 - iv. The half power frequencies,
 - v. The total impedance of the circuit at resonance

Question 3

For the network of Figure 3:

- a) Apply Thevenin's theorem the 80 mH inductor .
- b) Find the expression for the transient of the current i_L and the voltage v_L after the closing of the switch ($I_L = 0$) (8 marks)
- c) Draw the resultant waveforms for i_L and v_L on the same graph.

Figure 3

(3 marks) (3 marks) (3 marks)

(4 marks)

(3 marks)

(6 marks)

(6 marks)

Question 4

For the series-parallel circuit shown in Figure 4

- (a) Draw the magnetic circuit equivalent and label the flux densities $(\Phi_1 \Phi_2)$ and the reluctances
- (b) If $\mu = 6 \times 10^{-5}$ find H_{bcde}
- (c) Use Ampere's circuital law to find H_{be}
- (d) Find the total flux density Φ_{T}
- (e) Find the current I
- Sheet steel 1.5 × 10⁻⁴ Wb 50 ten 0.2 m * 0.05 m ross-sectional area = $6 \times 10^{-4} \text{ m}^2$ throughout

Figure 4

Question 5

A DC machine having the armature resistance of 0.30 Ω and the field resistance of $R_F = 500 \Omega$ operates as a motor at a speed of 1200 rpm with induced armature voltage $E_A = 145$ V. If the speed is changed to 600 rpm the armature current $I_A = 30A$ and field current $I_F = 2.5$ A. Find

a) the voltage applied to the field circuit (3 marks) b) the voltage V_T applied to the armature (8 marks) c) the developed torque, and (6 marks) d) the developed power. (3 marks)

- (6 marks) (3 marks) (3 marks) (3 marks)
- (5 marks)