UNIVERSITY OF SWAZILAND Faculty of Science and Engineering Department of Electrical and Electronic Engineering Supplementary Examination 2015

Title of Paper	:	Analogue Design II
Course Code	:	EE323
Time Allowed	:	3 hrs

Instructions:

1.2

- 1. Answer all four (4) questions
- 2. Each question carries 25 marks

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of five (5) pages including the cover page

Question 1 [25]

.

1.2

a) Fill i	n the blank(s) with appropriate word(s)	[10]
i)		
	carrier device.	
ii)	Enhancement type MOSFETs are normally	
	devices while depletion type MOSFETs are normally	
•••	devices.	1
iii)	The Gate terminal of a MOSFET is isolated from the semi	conductor
iv)	by a thin layer of The MOSFET cell embeds a parasitic in	its
17)	structure.	115
v)	The gate-source voltage at which the la	yer in a
	MOSFET is formed is called the voltage.	-
vi)	The thickness of the layer remains consta	int as gate
	source voltage is increased beyond the vo	oltage.
b) Dete	ermine the voltage gain, input and output impedance with fe	edback for
	age series feedback having $A = -100, R_i = 10k\Omega, R_o =$	
	back of $\beta = -0.1$.	[9]
	•	L' J
c) List	out two characteristics of feedback amplifier.	[0]
<i>c)</i> List	out two characteristics of reeuback amplimer.	[2]
d) Hov	v does an oscillator differs from an amplifier	[2]
	-	~ 2
e) Nan	ne two low frequency oscillators	[2]

1

Question 2 [25]

 $\lambda_{1,2}$

a) The feedback amplifier shown in figure 2.1 makes use of an op – amp with an open – loop gain $A = 10^5$.

- i) How much is the output voltage (v_o) for input signal $v_s = 2 mV$ in the circuit shown [6]
- b) Figure 2.2 shows an op amp circuit with voltage series through R_1 and R_2 . The open loop gain of the op amp is $A = 10^4$ and input impedance is $100K\Omega$.

Figure 2.2

i) Find the gain and input impedance of the amplifier with feedback.

[8]

- c) An amplifier has a bandwidth of 500 KHz and an open voltage gain of 100.
 - i) What should be the amount of negative feedback (β) if the bandwidth is extended to 5 *MHz*? [5]

[1]

- ii) What will be the new gain after negative feedback is introduced?
- d) Design a *Wien-bridge oscillator* using op-amp to generate a sinusoidal waveform of frequency 1 KHz.
 [5]

N.c

Question 3 [25]

i)

1.2

a) For the circuit of figure 3.1.

	i)	Calculate the:	
		Output power	[2]
		• Input power	[2]
		 Power handled by each output transistor 	[2]
		• Circuit efficiency for an input of 12 V _{rms}	[1]
	ii)	Calculate the:	
		Maximum input power	[2]
		Maximum output power	[2]
		• Input voltage for maximum power operation	[2]
		• Power dissipated by the output transistors at this	[2]
	iii)	Calculate the maximum power dissipated by the output tra	nsistors and
		the voltage at which this occurs	[4]
b)	For	the Harmonic Distortion reading: $D_2 = 0.1, D_3 = 0.02$	2, and $D_4 =$
		, with $I_1 = 4 A$ and $R_c = 8\Omega$. Calculate the:	
	i)	Total Harmonic Distortion	[2]

Total Harmonic Distortion	[2]
Fundamental power component	[2]
Total power	[2]
	Total Harmonic Distortion Fundamental power component

4 ·

Question 4 [25]

1.2

a) Determine the following parameters: I_{DQ} , V_{DSQ} , $V_{DS(sat)}$, g_m , r_o and A_v of a MOSFET circuit. The circuit in figure 4.1 assumes the following parameters: $V_{GSQ} = 2.12V$, $V_{DD} = 5V$, $V_{GS} = 1.82V$ and $R_D = 2.5K\Omega$. The transistor parameters are $V_{TN} = 1V$, $k_n = 0.80mA/V^2$ and $\lambda = 0.02V^{-2}$. Assume the transistor is biased in the saturation region. [14]

b) For the circuit below (figure 4.2) determine: R_{Thi} , C_i and f_{Hi} . Where $A_v = -3$, $C_G = 0.01 \mu F$, $C_c = 0.5 \mu F$, $C_s = 2 \mu F$, $C_{gd} = 2 p F$, $C_{gs} = 4 p F$. [11]

figure 4.2