UNIVERSITY OF SWAZILAND MAIN EXAMINATION, DECEMBER 2014

FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:	SIGNALS AND SYSTEMS I
COURSE NUMBER:	EE331
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions.
2. Each question carries 25 marks.
3. Marks for different sections are shown on the right hand margin.
4. Sheets containing useful tables are attached at the end.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER HAS EIGHT (8) PAGES INCLUDING THIS PAGE

QUESTION 1

a) Define the following terms:
i) Walsh Functions
[2]
ii) Invertible system
b) Given a signal

$$
f(t)=\left\lvert\, \begin{array}{ll}
1, & 0<t<2 \\
2, & 2<t<4
\end{array}\right.
$$

where $f(t)$ is periodic with a period of $T=4$.
i) Determine the general expression for the Fourier series coefficients, a_{k}.
ii) Calculate the average power, $P_{a v}$ of $f(t)$.
c) Determine the period and fundamental frequency of the following function:

$$
f(t)=8+4 e^{-j 4 t}+4 e^{j 4 t}
$$

OUESTION 2

(a) A signal $x(t)$ is passed through a system with impulse response, $h(t)$ where

$$
\begin{aligned}
& x(t)=\left\lvert\, \begin{array}{ll}
3, & 0<t<3 \\
0, & t \text { otherwise }
\end{array}\right. \\
& h(t)=\left\lvert\, \begin{array}{ll}
t, & 0<t<4 \\
0, & t \text { otherwise }
\end{array}\right.
\end{aligned}
$$

as sketched below

(i) Find expressions for the output signal $y(t)$. The signal $y(t)$ may be divided into clearly defined time intervals.
(ii) Find the maximum value of the response and the time at which it occurs.
(b) Suppose a causal, linear, time-invariant, continuous-time system behaves according to the following differential equation:

$$
y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=x^{\prime}(t)+3 x(t)
$$

where $x(t)$ and $y(t)$ are the input and output signals, respectively, to the system.
i) Find $H(s)=Y(s) / X(s)$
ii) Find the impulse response, $h(t)$, of the system.
iii) Find the input, $x(t)$, to the system if the output is $y(t)=t e^{-t} u(t)$.

QUESTION 3

(a) The input-output sigrials of a system are given by $x(t)$ and $y(t)$ respectively. Draw a table such as given below and indicate with a "yes" or "no" whether the term at the head of each column is a correct description of the system given by the input-output equation on the left.

System Equation	Linear	Time-invariant	Causal
$y(t)=\sqrt{x^{2}(t)}$			
$y[n]=2(x[n+1] u[n]-x[n])+1$			

(b) Consider the pair of signals shown in Fig. Q3a:

Fig. 3a
Determine whether the pair is orthogonal over the interval $(0,4)$. Justify your answer.
(c) (i) Sketch the odd component of the signal shown in Fig. 4(b):

Fig. 4(b)
(ii) Is the signal $x(t)$ given above an energy or power signal? Justify your answer.
(a) Express the unit rectangular pulse in terms of the unit step function.
(b) State the three Dirichlet conditions.
(c) Sketch the block diagram for a system having blocks with the following impulse responses:

$$
\begin{equation*}
\left[\left[h_{1}(t)+h_{2}(t)\right] * h_{3}(t)\right]+h_{4}(t) \tag{3}
\end{equation*}
$$

(d) Given that $f(t)$ is the convolution of t and $\cos (2 t)$ that is $f(t)=t * \cos (2 t)$. Use the Laplace Transform Method to find the initial value of $f(t)$.
(e) For the following signal, determine the location of the poles.

$$
x(t)=2 \cos (3 t) u(t)+3 \sin (4 t) u(t)
$$

(f) Let $x(t)=\left\{\begin{array}{c}t+1,-1 \leq t \leq 0 \\ 1,0 \leq t \leq 1 \\ 0, \text { otherwise }\end{array}\right.$
i) Sketch the signal $x(t)$.
ii) Sketch $y(t)=4 x\left(\frac{t}{3}+2\right)$
[5]
(a) Find the Inverse Laplace Transform of

$$
\begin{equation*}
F(s)=\frac{5 s-12}{s^{2}+4 s+13} \tag{5}
\end{equation*}
$$

(b) Using Laplace transforms solve the second-order linear differential equation

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=6 e^{-2 t}
$$

with initial conditions $y(0)=-2$ and $y^{\prime}(0)=8$.
(c) (i) Obtain the transfer function, $\mathrm{V}_{2}(\mathrm{~s}) / \mathrm{V}_{1}(\mathrm{~s})$, of the circuit below, and
(ii) Find its poles and zeros.

Properties of Laplace Transforms

i) Time-shift (delay): $\quad f\left(t-t_{0}\right) \stackrel{L}{\longleftrightarrow} F(s) e^{-s_{0}}, t_{0}>0$
ii) Time differentiation: $\frac{d f(t)}{d t} \stackrel{L}{\longleftrightarrow} s F(s)-f(0)$
iii) Time integration: $\quad \int_{0}^{t} f(t) d t \stackrel{L}{\longleftrightarrow} \frac{F(s)}{s}$
iv) Linearity: $\quad a f(t)+b g(t) \stackrel{L}{\longleftrightarrow} a F(s)+b F(s)$
v) Convolution Integral: $x(t) * h(t) \stackrel{L}{\longleftrightarrow} X(s) H(s)$
vi) \quad Frequency-shift: $\quad e^{\alpha t} f(t) \stackrel{L}{\longleftrightarrow} F(s-\alpha)$
vii) Multiplying by $t: \quad t f(t) \stackrel{L}{\longleftrightarrow}-\frac{d F(s)}{d s}$
viii) \quad Scaling: $\quad f(a t) \stackrel{L}{\longleftrightarrow} \frac{1}{a} F\left(\frac{s}{a}\right), a>0$
ix) Initial Value Theorem: $\lim _{s \rightarrow \infty}\{s F(s)\}=f(0)$
x) Final Value Theorem: $\lim _{s \rightarrow 0}\{s F(s)\}=f(\infty)$

