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QUESTIONl 

a) Define the following tenfis: 

i) Walsh Functions 
ii) Invertible system 

b) Given a signal 

[2] 
[2] 

f(t)= 1, 0<t<2 
2, 2 <t < 4 

where f(t) is periodic with a period of T =4. 


i) Detennine the general expression for the Fourier series coefficients, ak • [12]
.. 
ii) Calculate the average power,~. of f(t). [5] 

c) Detennine the period and fundamental frequency of the following function: [4] 

f(t)=8+4e- J41 +4eJ4t 

'. 
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OUESTION2 

(a) 	 A signal x(t) is passed through a system with impulse response, h(t) where 

3, 0<t<3 
x(t) = 

0, t otherwise 

t, 0<t<4 
h(t) = 

0, t otherwise 

as sketched below 

x(t) h(tJ 
4 

3 

t t3 

(i) 	 Find expressions for the output signal y(t). The signal yet) may be divided into 

clearly defined time intervals. [10] 

(ii) 	 Find the maximum value of the response and the time at which it occurs. 

[3] 

(b) 	 Suppose a causal, linear, time-invariant, continuous-time system behaves according to 
the following differential equation: 

y"(t) +3y'(t) +2y(t) =x'(t) +3x(t) 

where x(t) and yet) are the input and output signals, respectively, to the system. 

i) Find H(s) =Y(s)/Xes) [2] 

.ii) Find the impulse response, h(t) , of the system. [4] 

iii) Find the input, x(t), to the system if the output is yet) =te-fu(t). [6] 
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QUESTION 3 

(a) 	 The input-output signals ofa system are given by x(t) and yet) respectively. Draw a 

table such as given below and indicate with a "yes" or "no" whether the term at the 
head ofeach column is a correct description of the system given by the input-output 
equation on the left. [6] 

System Equation Linear Time-invariant Causal 

yet) = ~x 2(t) 

y[n] 2(x[n + l]u[n]- x[nJ) +1 

(b) 	 Consider the pair ofsignals shown in Fig. Q3a: 

,. 
u(t) v(t) 

11 


1 
 2 3 4 t 

1 --1 

I 

1 2 3 41 t 

Fig.3a 

Determine whether the pair is orthogonal over the interval (0, 4). Justify your answer. 
[7] 

(c) 	 (i) Sketch the odd component of the signal shown in Fig. 4(b): [7] 
x(t) 

Fig.4(b) 
(ii) Is the signal x(t) given above an energy or power signal? Justify your answer. 

[5] 
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QUESTION 4 

(a) 	 Express the unit rectangular pulse in terms of the unit step function. [2] 

(b) 	 State the three Dirichlet conditions. [3] 

(c) 	 Sketch the block diagram for a system having blocks with the following impulse 
responses: 

[[~(t) +~(t)] *~(t)J+ h4 (t) 	 [3] 

(d) 	 Given that f(t) is the convolutionoft and cos(2t) that is f(t):::t*cos(2t). Usethe 

Laplace Transform Method to find the initial value of f(t). [5] 

(e) 	 For the following signal, determine the location of the poles. [5] 

x(t) =2cos(3t)u(t)+3sin(4t)u(t) 

t+l' -1:::;t:::;O 

(t) 	 Let x(t) 1, 0:::; t :::; 1 
{ 

0, otherwise 

i) Sketch the signal x(t). [2] 

ii) Sketch y(t) = 4X(~+2) [5] 

.. 
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QUESTIONS 

(a) Find the Inverse Laplace Transform of 

F(s):::: 5s-12 
S2 +4s+13 

[5] 

(b) Using Laplace transforms solve the second-order linear differential equation 

y"(t) +4 y'(t) +4y(t):::: 6e-2t 

with initial conditions y(O):::: -2 and y'(O) == 8 . [10] 

(c) (i) 

(ii) 

Obtain t~e transfer function, V2(s)N1(s), of the circuit below, and 

Find its poles and zeros. 

[7] 

[3] 

L lH 
Rz 

2U 
C 
O.SF 
Iv,(t) 
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Table of Laplace Transforms 

delta function o(t) ~ 1 

~hifted d~lta function 6(t ~ a) ~ e-as 

unit step u(t) 1 
8 

tamp ru{t) ~ ;J 
1 

2pambola t2u(t) ~ s:r 
n-thpower f/l. ~ n! 

:;n:+r 

a-at _1_exponential decay 8+a 
e-a1tl 2a .twO-Sided exponential decay a2 _.2 

te-at ~ 1 
(s+a.)ll 

{I at)e-at ~ II 

(8ta)2 
a·.~ponential approach l_e-at 

a{sta) 

wsine sin (wt) ~ s2+~ 

.·cosine cos (wt) ~ 8 

8'1.t",2 


hyperbolic sine sinh(wt) ~ '"
,!Lwll 

shypetboliccosine cash {wt} s!Lw2 

wexpOIl.eJltialJy decaying sine e-at sin (wt) ~ (,8+a)2+w2 

s+aexponentially decaying cosine e-al cos (wt) ~ (sta)2+w2 

frequency differentiation tf(t) ~ _F'(S) 

frequency n..th . differentiation tn f(t) <=b (_1)" F(n) (8) 

time differentiation f'(t} =~f(t) ~ sF(s) f(O) 

time 2nd.differentiation f"(t) =~ f(t) ~ s2F(s) ,-sf(O),- 1'(0) 


timen-th differentiation f(n)(t) ::::: ~: f(t} snF(s) - 8n- 1f(O):- ... f(n-1)(0) 


tmlfl integration J~I(T)dT =(u * f)(t) ~F{s) 
frequency integration t/(t) ~. faoo F(u)du 

F(B)-r1 
time inverse . f-1(t) a 

F(s) r~(o)r'l{o). rn(O}.time differentiation f-n(t) ~ 7'+ II .+~+"'+-8-

.. 
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Properties of Laplace Transforms 

ii) Time differentiation: 

iii) Time integration: 

iv) Linearity: 

df(t) ~sF(s) f(O)
dt 

Jf(t)dt~ F(s) 
o s 


af(t) +bg(t)~ aF(s) +bF(s) 


v) Convolution Integral: x(t)*h(t)~X(s)H(s) 

vi) Frequency-shift: eat f(t) ~ F(s a) 

if() L dF(s)vii) Multiplying by t : t t~---
ds 

viii) Scaling: f(at)~: F(:J. a>O 

ix) Initial Value Theorem: lim {sF(s)} = f(O) 
s-+ro 

x) Final Value Theorem: lim {sF(s)} = f(oo) 
s-+o 

., . 
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