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QUESTION 1

a) Define the following terms:

i) Walsh Functions
if) Invertible system

b) Given a signal

I, O0<r<2

f(f)=2, 2<t<4

where f(f)is periodic with a period of T =4.

i) Determine the general expression for the Fourier series coefficients, a, .
»

ii) Calculate the average power, P, of f(¢).

¢) Determine the period and fundamental frequency of the following function:

f(O)=8+4e™ + 42"

[2]
[2]

[12]
[5]

[4]



QUESTION 2

~r

(a) A signal x(f) is passed through a system with impulse response, h(¢) where

3, O<t<3
x(t) =

0, ¢ otherwise

t, O<t<4
h(t) = .

0, t otherwise

as sketched below

x(@) A h(t) A

A\ 4

A\ 4

" (i) Find expressions for the output signal y(¢). The signal y(¢) may be divided into
clearly defined time intervals. [10]

(ii)  Find the maximum value of the response and the time at which it occurs.

[3]

(b)  Suppose a causal, linear, time-invariant, continuous-time system behaves according to
the following differential equation:

V() +3Y'(6)+20(1) = X' (1) + 3x(¢)

where x(¢) and yp(¢) are the input and output signals, respectively, to the system.

i) Find H(s)=Y(s)/ X(s) [2]
-ii) Find the impulse response, A(f), of thc system. [4]
iii) Find the input, x(f), to the system if the output is y(f) = te”"u(t). [6]



QUESTION 3

(a)  The input-output sigrials of a system are given by x(¢) and y(¢) respectively. Draw a
table such as given below and indicate with a “yes” or “no” whether the term at the
head of each column is a correct description of the system given by the input-output
equation on the left. [6]

System Equation Linear Time-invariant Causal

¥(6) =% (1)

vl =2(x[n+1Ju[n] - x[n])+1

(b)  Consider the pair of signals shown in Fig. Q3a:

u(®) vit)
1 1
{ 1 i
1 2 3 4 t 1 2 3 4 t
_1 - _.\1 -
Fig. 3a

Determine whether the pair is orthogonal over the interval (0, 4). Justify your answer.

(7]
) @ Sketch the odd component of the signal shown in Fig. 4(b): [7]
() N ‘
1
PR
—1k - - -
Fig. 4(b)
(ii)  Is the signal x(¢) given above an energy or power signal? Justify your answer.
[5]



OQUESTION 4

(a)
(b)
(©

(d)

(¢)

®

Express the unit rectangular pulse in terms of the unit step function. | [2]
State the three Dirichlet conditions. [3]

Sketch the block diagram for a system having blocks with the following impulse
responses:

[ + RO * By (1) |+ () 3]

Given that f(¢)is the convolution of ¢ and cos(2¢) thatis f(#)=t*cos(2¢). Use the
Laplace Transform Method to find the initial value of f(f). [5]

For the following signal, determine the location of the poles. [5]

Ld

x(t) = 2cos(3t)u(t) + 3sin(40)u(r)

t+1, -1<5t<0
Let x(t)=<¢ 1, 0<¢t<1
0, otherwise
i) Sketch the signal x(¢). [2]

i)  Sketch y(t)=4x[-;—+2) 5]



~ QUESTION 5

wr

(a)  Find the Inverse Laplace Transform of

55—12 ,

F(s)=—— 5

) sE+4s5+13 ]
~(b)  Using Laplace transforms solve the second-order linear differential equation
V() +4Y () +4p(t) = 6™

with initial conditions y(0)=~2 and y'(0)=8. [10]

© @ Obtain the transfer function, Va(s)/V(s), of the circuit below, and [7]
(ii)  Find its poles and zeros. : [3]

L 1H R; 1Q _J-
vi(t) | - R, C va(t)

2Q —I— 0.5F
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Table of Laplace Transforms
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Properties of Laplace Transforms

)

vii)

viii)

-

Time-shift (delay):  f(t—t,) <> F(s)e™, t,>0

Time differentiation: %(:—) L sF(s)— f(0)

i
Time integration: I f(Hdt <> F(s)
s
0
Linearity: af (t)+ bg(t) <+ aF (s)+bF(s)

Convolution Integral: x(¢) * A(t) <= X (s)H(s)

Frequency-shift: e fO L F(s—a)
Multiplying by 1: ()« —-dl;il
s
Scaling: f (at)(——L—é-l-F (-{) , a>0
a \a

Initial Value Theorem:lim {sF(s)} = /(0)

 Final Value Theorem: lim {sF(s)} = f()



