UNIVERSITY OF SWAZILAND

SUPPLIMENTERY EXAMINATION
JULY 2015

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC

 ENGINEERING
TITLE OF PAPER: ANALOGUE DESIGN III COURSE CODE: EE421

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries $\mathbf{2 5}$ marks.
2. If you think not enough data has been given in any question you may assume any reasonable values.
3. Some useful formulas are given in the last page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

A differential amplifier circuit implemented with BJTs, is shown in Figure-Q1.

Figure-Q1

(a) If the transistors are of high gain type, calculate the collector currents and collector voltages of each transistor at no signal.
(b) Assuming a signal source v_{d} is differentially connected to the inputs (ie, $v_{d}=v_{A}-v_{B}$), draw the differential half circuit for ac signals and find the voltage gain $\frac{v_{0}}{v_{d}}$ deriving any formula you use.
(c) Draw the common mode half circuit for ac signals and calculate the common mode gain at the output v_{o}. What is the CMRR in dB ? Derive any formula you use. Assume the resistance $R_{S}=600 \mathrm{k}$
(d) Calculate the differential input resistance of the amplifier. You may use, $\beta_{Q 1}=\beta_{Q 2}=100$.

QUESTION TWO (25 marks)

(a) Consider the Widlar current source shown in Figure-Q2(a). The transistors Q_{1} and Q_{2} are matched and of high gain type.
(i) Derive a relationship between I_{o} and $I_{r e f}$. (6 marks)
(ii) Find the value of R_{F} if the output current of the source is $130 \mu \mathrm{~A}$, using the following data.

$$
\begin{equation*}
V_{C C}=10^{\circ} \mathrm{V} \quad V_{B E 1}=0.6 \mathrm{~V} \quad R=560 \Omega \tag{6marks}
\end{equation*}
$$

Figure-Q2(a)

Figure-Q2(b)
(b) A current mirror designed with NMOS devices is shown in Figure-Q2(b). You may assume the following device parameters.

$$
\begin{array}{llll}
L_{1}=L_{2}=5 \mu m & W_{1}=15 \mu m & W_{2}=50 \mu m & V_{t}=2 V \\
\mu C_{o x}=60 \frac{\mu A}{V^{2}} & I_{\text {ref }}=40 \mu A & &
\end{array}
$$

(i) Find the value of $V_{G S}$.
(ii) Calculate the value of the output current I_{o}.
(iii) What is the minimum value of the output voltage V_{o} ?

QUESTION THREE (25 marks)

(a) An IC amplifier is shown in Figure-Q3(a). Assume that the transistors are of high gain type with Q_{1} and Q_{2} are matched.
(i) Find the value of R if the collector current of Q_{3} is $350 \mu A$.
(ii) Derive an expression for the voltage gain $\frac{v_{o}}{v_{i n}}$ and calculate its value.

$$
V_{A}=80 \mathrm{~V} \quad \beta=100
$$

(iii) Find the input impedance of the amplifier.

Figure-Q3(a)

Figure-Q3(b)
(b) An amplifier implemented with enhancement type NMOS devices is shown in FigureQ3(b). Assume the following process parameters for the devices.

$$
\begin{array}{rlrl}
L_{2} & =10 \mu \mathrm{~m} & L_{1}=40 \mu m & W_{2}=150 \mu m \\
V_{t} & =3 V & \mu C_{O X}=100 \frac{\mu \mathrm{~A}}{V^{2}} & W_{1}=10 \mu m \\
\end{array}
$$

(i) If V_{A} is given a dc voltage of 3.5 V , find the dc voltage at the output V_{o} and the current flowing in Q_{1}.
(ii) An ac signal of 100 mV -p superimposed on a 3.5 V dc level is applied to the input. Draw the small signal equivalent circuit and calculate the output ac signal voltage.
(7 marks)

QUESTION FOUR (25 marks)

Consider the cascode amplifier shown in Figure-Q4.

Figure-Q4
(i) If the transistors are identical and of high gain type, find the collector currents and the collector voltages of each transistor under no signal.
(8 marks)
(ii) Derive an expression for the mid-band gain $\frac{v_{o}}{v_{i n}}$, and find its value. Assume that the $\beta=100$ and may neglect the Early effect.
(12 marks)
(iii) Find an expression for the input impedance $R_{\text {in }}$ and calculate its value for ac signals.

QUESTION FIVE (25 marks)

A dc voltage regulator circuit is shown in Figure-Q5.

Figure-Q5
(i) What are the maximum and minimum values of V_{o} ?
(5 marks)
(ii) Find the maximum value of load current if the maximum power dissipation in Q_{2} is 20 W . (5 marks)
(iii) Suggest an over current protection circuit for the regulator output, based on an active device and also determine the necessary component values with power rating.
(5 marks)
(iv) Estimate the value of R_{1} and its power rating if $\beta_{Q 2}=20$ and $I_{C 1} \geq 15 \mathrm{~mA}$. (5 marks)
(v) Find the maximum power dissipation in the zener diode.

1. SOME USEFUL MOSFET EQUATIONS

$$
\begin{aligned}
& i_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(v_{G S}-v_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] \text { in triode region } \\
& i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{w}{L}\left(v_{G S}-v_{t}\right)^{2} \text { in saturation region } \\
& i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{w}{L}\left(v_{G S}-v_{t}\right)^{2}\left(1+\lambda v_{D S}\right) \text { in saturation region with Channel Modulation effect } \\
& V_{A}=\frac{1}{\lambda}
\end{aligned}
$$

2. Unless otherwise stated $V_{B E(O N)}=0.6 \mathrm{~V}$ and $V_{T}=0.025 \mathrm{~V}$.
