University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2014

Title of Paper	:	Control Engineering I
Course Number	:	EE431
Time Allowed	:	3 hrs
Instructions	2. 3.	Answer any four (4) questions Each question carries 25 marks Useful information is attached at the end of the question paper " Special graph paper to be provided

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of nine (9) pages

Question 1

- (a) Briefly compare and contrast open-loop control system versus closed loop control system. (4 Marks)
- (b) Draw the block diagram of a closed loop control system for a disk drive. (4 Marks)
- (c) Find the transfer function, $V_0(s)/V_i(s)$, for the circuit in figure 1(c) (6 Marks)

Figure 1 (d)

(e) Find the transfer function, T(s) = Y(s)/R(s), for the following system represented in state space.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} \mathbf{r}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

Note: $T(s) = C(sI - A)^{-1}B + D$

(6 Marks)

Question 2

- (a) Based on the natural response definition of stability, explain for the the close-loop system case, the terms *stable, unstable* and *marginally stable.* (6 Marks)
- (b) (i) Derive the transfer function of the non-inverting amplifier as shown in figure 2 (b). (7 Marks)
 - (ii) Then, calculate the transfer function given the following values for the circuit shown in figure 2(c).

(c) Find the state-space representation in phase variable form for the system shown in figure 2(d). (6 Marks)

$$\frac{R(s)}{s^5 + 8s^4 + 9s^3 + 6s^2 + s + 30} \qquad C(s)$$

Figure 2 (d)

Question 3

(a) For the system shown in figure 3 (a), write the state equations and the output equation for the phase-variable representation.(8 Marks)

$$\frac{R(s)}{s^4 + 2s^3 + s^2 + 5s + 10} \qquad C(s)$$

Figure 3 (a)

(b) Given the transfer function below, convert the transfer function into the following

$$T(s) = \frac{C(s)}{R(s)} = \frac{s^3 + s^2 + 7s + 1}{s^4 + 3s^3 + 5s^2 + 6s + 4}$$

- (i) Phase-variable matrix form and draw the signal flow graph using the Phasevariable form. (4 Marks)
- (ii) Show that the transfer function can be converted to a controller canonical matrix form and draw the signal flow graph using the controller canonical form. (4 Marks)

(c) Given the system

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} u$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

Find out how many poles are in the left half-plane, in the half-plane, and on the $j\omega$ -axis. (9 Marks)

Question 4

- (a) What information is contained in the specification $K_p = 100$? (4 Marks)
- (b) Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system of figure 4 (b) (6 Marks)

Figure 4 (b)

(c) Find the range of gain, K, for the system of figure 4 (c) that will cause the system to be stable, unstable, and marginally stable. Assume K > 0.
 (6 Marks)

Figure 4(c)

(d) Using the Routh-Hurwitz criterion and the unity feedback system of figure 1(c) with

$$G(s) = \frac{\kappa}{s(s+1)(s+2)(s+5)}$$

Figure 1(c)

- (i) Find the range of K for stability [3]
- (ii) Find the value of K for marginally stability [3]
- (iii) Find the actual location of the closed-loop poles when the system is marginally stable. [3]

(9 Marks)

Question 5

(a) For the given transfer function, sketch the bode log magnitude diagram which shows how the log magnitude of the system is affected by changing input frequency.

(7 Marks)

$$T(s)=\frac{1}{2s+100}$$

- (b) Find the expression of frequency response for the system with a transfer function of the $G(s) = \frac{1}{1+2s}$, and then evaluate the magnitude and phase angles of frequency response at $\omega = 0.5 rad/s$ and represent the result in a the complex plane.
- (15 Marks) (c) For the system in figure 5(c), evaluate the static error constants and find the expected error for the standard step, ramp, and parabolic inputs. (5 Marks)

Figure 5 (c)

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s) I(s)	Admittance Y(s) = I(s): V(s)
Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$\mathbf{v}(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
	v(t)=Ri(t)	$l(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mbos), L = H (henries),

Table 2

Component	Force- velocity	Force- displacement	Impedance $Z_M(s) = F(s)/X(s)$	
Spring A(t) A(t) f(t) K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = K x(t)	К	
Viscous damper	$f(t) = f_{\rm v} v(t)$	$f(t) = f_{\rm v} \frac{dx(t)}{dt}$	$f_{v}s$	
$M_{ii} = \frac{1}{m} x(I)$ $M = \frac{1}{m} f(I)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms ²	

Note: The following set of symbols and units is used throughout this book: $f(t) = \mathbf{N}$ (newtons), $x(t) = \mathbf{m}$ (meters), $v(t) = \mathbf{m}$'s (meters) second), $K = \mathbf{N}$ m (newtons) meter), $f_r = \mathbf{N}$ -s/m (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{\text{step}}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(x) = e_{ramp}(x) = -\frac{1}{\limsup sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\limsup_{s \to 0} s^2 G(s)}$$

Position constant, K_p , where

 $K_p = \lim_{s \to 0} G(s)$

3

Velocity constant, K_v , where

$$K_{v} = \lim_{s \to 0} sG(s)$$

Acceleration constant, K_a , where

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Table 3

	Steady-state error formula	Туре О		Type 1		Type 2	
Input		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, u(1)	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_{p}}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, Iu(1)	$\frac{1}{K_y}$	$K_{\nu}=0$	œ	$K_v =$ Constant	$\frac{1}{K_r}$	$K_r = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	œ	$K_a = 0$	œ	$K_a =$ Constant	$\frac{1}{K_a}$

p