UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE
 Department of Electrical and Electronic Engineering

MAIN EXAMINATION 2014

Title of the Paper:
Electric Machinery
Course Number: EE451
Time Allowed: Three Hours.

Instructions:

1. The answer is better written in the space provided in the question book. Use the answer book as a scratch pad.
2. This paper has 8 pages, including this page.

DO NOT OPEN THE PAPER UNTIL
PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Q1, 20 pts: It is desired to achieve a time-varying magnetic flux density in the air gap of the magnetic circuit of Fig. Q1-1 of the form:

$$
B_{g}=B_{0}+B_{1} \cdot \sin (\omega t)
$$

where $\mathrm{B}_{0}=0.5 \mathrm{~T}$ and $\mathrm{B}_{1}=0.25 \mathrm{~T}$. The DC field B_{0} is to be created by a neodymium-iron-boron magnet, whereas the time-varying field is to be created by a time-varying current, $i(t)=I_{1} \cdot \cos (\omega t)$.

Fig. Q1-1

For $\mathrm{A}_{\mathrm{g}}=6 \mathrm{cM}^{2}, \mathrm{~g}=0.4 \mathrm{cM}$, and $\mathrm{N}=200$ turns, find:
(i). the magnet length d and the magnet area A_{m} that will achieve the desired de air-gap flux density and minimize the magnet volume.
(ii). the peak value of the time-varying current, I_{1}, required to achieve the desired time-varying air-gap flux density.
(iii). If replace the magnet with a dc current, I_{0}, in the coil, find I_{0}.

Q2, 10 pts: There are 3 coils in a magnetic circuit, $\mathrm{N}_{1}, \mathrm{~N}_{2}$, and N_{3} carrying respectively a current I_{1}, I_{2}, and I_{3}. The polarities among the coils are shown in Fig. Q2-1 by the reference of the core and winding direction. Find:
(i). At the bottom of Fig. Q2-1, there is no reference of winding direction and hence a

Fig. Q2-1 "dot" convention is adopted to show coupling direction. On Fig. Q2-1, mark the proper terminals of coil 1 and 2 with a 'dot'; of coil 1 and 3 with a 'star' to carry the direction information from the top to the bottom figure.
(ii). The flux Φ_{2} and $\Phi_{2 t}$
(iii). $\mathrm{L}_{2}, \mathrm{~L}_{23}$, and L_{21}
(iv). Give the coils terminal voltages, $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{3}, relation to the currents in matrix form.

Q3, 20pts: With the instruments located on the high-voltage side and the low-voltage side short-circuited, the short-circuit test readings for a $50-\mathrm{KVA} 2400: 240-\mathrm{V}$ transformer are $48 \mathrm{~V}, 20.8 \mathrm{~A}$, and 617 W . An open-circuit test with the low-voltage side energized gives instrument readings on that side: $240 \mathrm{~V}, 5.41 \mathrm{~A}$, and 186 W . Find:
(i). the copper loss and the iron loss.
(ii). the series parameters of the transformer
(iii). the parallel parameters of the transformer
(iv). Are you able to divide the primary and the secondary series components values under reasonable tolerance. Draw the equivalent circuit of the transformer.

Q4, $\mathbf{1 0} \mathbf{~ p t s : ~ F i g . ~ Q 4 - 1 ~ s h o w s ~ a n ~ e l e c t r o s t a t i c ~}$ volt-meter, which is a capacitive system consisting of a movable and a fixed electrode. The movable electrode can rotate on a pivot to keep a constant air gap "d" between two electrodes. Consider only ideal case with no fringing flux. A torsional spring is connected to the movable electrode to balance the movable elec-

Fig. Q4-1 trode torsion. Its torque is: $T_{s p g}=-K_{s} \varphi$. Set $\varphi=0$ at $\mathrm{T}_{\text {spg }}=0$ and $\mathrm{V}=0$.
(i). find $C(\varphi)$
(ii). find the energy $E n(V, \varphi)$.
(iii). find the relation between measured voltage V_{m} and φ

Q5, 20 pts: Fig. Q5-1 shows a cross-sectional sketch of a machine having a rotor winding f and two identical stator windings "a" and " b " with turns N whose axes are in quadrature. The uniform air gap between rotor and stator is " g ", its equivalent cross-sectional area " Ag ", and the material of the core $\mu \rightarrow \infty$. The stator windings are energized by a balan-

Fig. Q5-1 ced two-phase currents:

$$
i_{a}=I_{a} \cdot \sin \omega t \quad i_{b}=I_{b} \cdot \cos \omega t
$$

(i). Derive the resultant flux density in the air gap B_{g}
(ii). Explain any specialty of the field.

Q6, 10 pts: A system shown in Fig. Q6-1 is energized under the 50 Hz power source. The synchronous motor has 4 poles and drives the interconnected shaft in the clockwise direction. The induction machine has 6 poles and its stator windings are connected to the source such that as to produce a coun-
 ter-clockwise rotating field (in opposite to the rotation of the synchronous motor). The machine has a wound rotor whose terminals are brought out through slip rings.
(i). At what speed does the motor run?
(ii). What is the frequency of the voltage produced at the slip rings of the induction motor? What is "s" now and in what operating mode if rotor is shorted properly?
(iii). What will be the frequency of the voltages produced at the slip rings of the induction motor if two leads of the induction motor stator are interchanged, reversing the direction of rotation of the resultant rotating field? Again what is "s" now and in what operating mode if rotor is shorted properly?

QT, 10 pts : The torque of a 2-phase permanentmagnet stepping motor of the form in Fig. Q7-1 can be expressed as:
$T_{m c h}=T_{0}\left(i_{1} \cdot \cos \theta_{m}+i_{2} \cdot \sin \theta_{m}\right)$
where T_{0} is a positive constant that depends upon the motor geometry and properties of the permanent magnet.

Calculate the rest (zero torque) positions

Fig. Q7-1 which will result if the motor is driven by a drive such that each phase current can be set equal to values $-I_{0}, 0$, and $+I_{0}$. Using such a drive what is the motor step size?

