UNIVERSITY OF SWAZILAND MAIN EXAMINATION, DECEMBER 2015

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:	ENGINEERING MECHANICS AND MATERIALS SCIENCE		
COURSE CODE:	EE201		
TIME ALLOWED:	THREE HOURS		

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer QUESTION 1 and ANY OTHER THREE QUESTIONS, making a total of four questions
- 2. Each question carries 25 marks.
- 3. Marks for different parts of a question are shown in the right hand margin.
- 4. A sheet containing useful formulae, some of which you may need, is attached at the end.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

EE201 ENGINEERING MECHANICS AND MATERIALS SCIENCE

Page 2 of 7

<u>QUESTION ONE (COMPULSORY)</u> (25 marks)

٩

(a) For the six main classes of engineering materials, use your own experience to ra				rank		
	them appr	oximate	ely:			
	(h) (h)		,	 、		

(i)	By stiffness (modulus).	(3 marks)

(ii) By thermal conductivity. (3 marks)

(b) Distinguish between the following terms as used in engineering mechanics

(i)	Fatigue and creep.	(3 marks)
(ii)	Inertia and impulsive force.	(3 marks)
(iii)	Angle of friction and coefficient of friction.	(3 marks)
(iv)	Brittleness and hardness.	(3 marks)

(c) Briefly discuss the material properties which the following items should have:

(i)	Key components of a bicycle.	(3 marks)
(ii)	Key components of a mains electrical plug.	(4 marks)

<u>QUESTION TWO</u> (25 marks)

(a) A sphere of radius 200 mm and weight 20 N is suspended against a smooth vertical wall by a string of length 200 mm. The string joins a point on the wall to a point on the surface of the sphere.

(i)	Draw the arrangement and explain why the external forces acting on the sphere		
	must be concurrent.	(4 marks)	
(ii)	Find the angle of inclination of the string with the horizontal.	(2 marks)	
(iii)	Determine the tension in the string	(2 marks)	

- (iv) Determine the reaction of the wall. (2 marks)
- (b) A vertical pile of mass 120 kg is driven 90 mm into the ground by the blow of a 500-kg hammer which falls through 800 mm. Assuming the hammer and pile remain in contact, determine:

(i)	the velocity of the hammer just before impact,	(3 marks)
(ii)	the velocity immediately after impact, and	(3 marks)
(iii)	the resistive force of the ground, assuming it to be uniform.	(4 marks)

(c) A ball of mass 100 g is moving with a velocity of 6 m/s when it strikes a stationary ball of mass 300 g. The velocity of the 100 g ball after impact is 2.5 m/s in the opposite direction it was moving before impact. Determine the velocity of the 300 g ball after impact. (5 marks)

QUESTION THREE (25 marks)

A ladder 5 m long and of weight 250 N is placed against a wall in a position where its inclination to the vertical is 30°. The coefficient of static friction for both the contact surfaces of the ladder, that is the wall and the floor, is 0.2. A man weighing 800 N climbs the ladder. At what position will he induce slipping of the ladder? (25 marks)

(2 marks)

<u>QUESTION FOUR</u> (25 marks)

- (a) A motor applies a constant torque to turn an initially stationary wheel of diameter
 0.5 m. The wheel acquires a speed of 150 revolutions per minute (r.p.m.) in 5 minutes. Determine:
 - (i) The angular acceleration of the wheel. (5 marks)
 - (ii) The total number of revolutions made by the wheel during this time. (3 marks)
 - (iii) The tangential speed of a point on the wheel at 150 r.p.m. (2 marks)
- (b) A system of frictionless pulleys carries two weights W₁ and W₂ of 100 N and 60 N respectively as shown in Fig. Q4b. The strings are inextensible and the pulleys are weightless. If the weights are held at rest and then released, find:
 - (i) The accelerations of the two weights. (10 marks)
 - (ii) The tension in the string.
 - (iii) The distance travelled by each weight 1.5 seconds from rest. (3 marks)

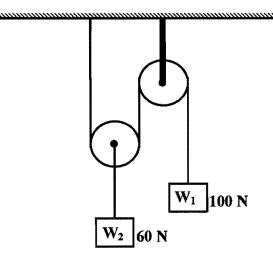


Fig. Q4b

<u>OUESTION FIVE</u> (25 marks)

١

(a) From a stress/strain point of view briefly explain what you understand by each of the following properties of metals:

(i)	Strength	(3 marks)
(ii)	Elasticity	(3 marks)
(iii)	Plasticity	(3 marks)
(iv)	Ductility	(3 marks)

(b) A reinforced concrete column is 300 mm by 300 mm in cross-section. The column is built with 8 steel bars, each of 20 mm diameter. The column carries a load of 360 kN. Find the stresses in concrete and in the steel bars. Take Young's Moduli as

 $E_{steel} = 210 \text{ GN/m}^2 \text{ and } E_{concrete} = 14 \text{ GN/m}^2.$ (13 marks)

LIST OF FORMULAE, SOME OF WHICH YOU MAY NEED

$$g = 9.81 \text{ m/s}^{2}$$

$$v = u + at, \quad \omega_{2} = \omega_{1} + at$$

$$s = ut + \frac{1}{2}at^{2}, \quad \theta = \omega_{1}t + \frac{1}{2}\alpha t^{2}$$

$$v^{2} = u^{2} + 2as, \quad \omega_{2}^{2} = \omega_{1}^{2} + 2\alpha\theta$$

$$F = \mu N$$
Work done = $F \times d = T \times \theta$
P.E = mgh
K.E. = $\frac{1}{2}mv^{2} = \frac{1}{2}I\omega^{2}$
Accelerating force = $m \times a$
Torque = $F \times x = I_{o}\alpha$
Power = $T\omega = Fv$
 $v = r\omega, \quad a_{R} = r\omega^{2} = \frac{v^{2}}{r}, \quad a_{T} = r\alpha$
Momentum = $mv = I\omega$
Energy stored = $\frac{1}{2}\frac{\sigma^{2}}{E}$ J/m³
 $\sigma_{i} = \frac{PE_{i}}{A_{1}E_{1} + A_{2}E_{2}}, \quad i = 1, 2$