Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2015

Title of Paper	$:$	Digital Systems I
		University of Swaziland
Course Number :	EE322	

Time Allowed : 3 hrs Instructions :

1. Answer all four (4) questions
2. Each question carries 25 marks

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of five (6) pages including the cover page

Question 1 [25]

a) Convert the following decimal numbers to the base indicated i. $\quad 7562$ to octal
ii. 1938 to hexadecimal
iii. 175 to binary
b) Show the following operations using 2's complement:

$$
\text { i. } 1011001-1000011
$$

ii. $0.1001-0.0101$
c) Using postulates and theorems of Boolean algebra, reduce the combinational circuit in figure 1.1 to a minimum number of literals. Draw the circuit using one gate.
[15]

figure 1.1

Question 2 [25]

a) What do you understand about the following terms as used in digital design:
i) Encoder
ii) Decoder
iii) Multiplexer
iv) Demultiplexer
v) Combinational circuit
vi) Sequential circuit
vii) Magnitude comparator
b) A BCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit in BCD to an appropriate code for the selection of segments in a display indicator used for displaying the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as shown in Figure 2.1. The numeric display chosen to represent the decimal digit is shown Figure 2.2. Design this decoder using a minimum number of gates. The six invalid combinations should result in a blank display.

figure 2.1

figure 2.2

Question 3 [25]

a) Implement the following Boolean function with a multiplexer:
$\mathrm{F}(A, B, C, D)=(0,1,3,4,8,9,15)$
b) From the following state diagram, figure 3.1 create the state table, and corresponding circuit using D flip-flops.

figure 3.1

Question 4 [25]

a) The graphical symbols of a half-subtractor (HS) and a full-subtractor (FS) for computing $b, d=x-y$, where b stands for borrow and d stands for difference are shown below:

i) Derive the truth table and minimal cost Sum of Product (SOP) implementation for the HS.
ii) Derive the truth table and a minimal cost SOP implementation for the FS
iii) Show how to build a FS from two HS blocks and an additional gate. [5]
b) Draw a circuit using $A N D, O R$, and $N O T$ gates to implement the function F specified by the truth table shown below. Try to minimize the number gates used.

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{F}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

