# University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016

| Title of Paper | : | Analogue Design II |   |
|----------------|---|--------------------|---|
| Course Number  | : | EE323              |   |
|                |   |                    | * |

| Time Allowed | : |    | 3 hrs                                  |
|--------------|---|----|----------------------------------------|
| Instructions | : |    |                                        |
|              |   | 1. | This paper contains five (5) questions |
|              |   | 2. | Answer an four (4) questions           |
|              |   | 3. | Each question carries 25 marks         |

### THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of seven (7) pages

## Question 1 [25]

| a) | Fill in | the blank(s) with appropriate word(s)             | [10]    |     |
|----|---------|---------------------------------------------------|---------|-----|
|    | i)      | A MOSFET is a controlled                          |         |     |
|    | -       | carrier device.                                   |         |     |
|    | ii)     | Enhancement type MOSFETs are normally             |         |     |
|    |         | devices while depletion type MOSFETs are normally |         |     |
|    |         | devices.                                          |         |     |
|    | iii)    | The Gate terminal of a MOSFET is isolated         | from    | the |
|    |         | semiconductor by a thin layer of                  |         |     |
|    | iv)     | The MOSFET cell embeds a parasitic                | _ in    | its |
|    |         | structure.                                        |         |     |
|    | v)      | The gate-source voltage at which the              | _layer  | in  |
|    | ,       | a MOSFET is formed is called the volta            | age.    |     |
|    | vi)     | The thickness of the layer remains c              | onstant | as  |
|    |         | gate source voltage is increased beyond the       |         |     |
|    |         | voltage.                                          |         |     |
|    |         | -                                                 |         |     |
|    |         |                                                   |         |     |

- b) Determine the voltage gain, input and output impedance with feedback for voltage series feedback having A = -100,  $R_i = 10k\Omega$ ,  $R_o = 20k\Omega$  for feedback of  $\beta = -0.1$ . [9]
- c) List out two characteristics of feedback amplifier. [2]
- d) How does an oscillator differs from an amplifier [2]
- e) Name two low frequency oscillators [2]

#### Question 2 [25]

a) The feedback amplifier shown in figure 2.1 makes use of an op – amp with an open – loop gain  $A = 10^5$ .



figure 2.1

- i) How much is the output voltage  $(v_o)$  for input signal  $v_s = 2 mV$  in the circuit shown [6]
- b) Figure 2.2 shows an op amp circuit with voltage series through  $R_1$  and  $R_2$ . The open loop gain of the op amp is  $A = 10^4$  and input impedance is  $100K\Omega$ .



figure 2.2

i) Find the gain and input impedance of the amplifier with feedback. [8]

- c) An amplifier has a bandwidth of 500 KHz and an open voltage gain of 100.
  - i) What should be the amount of negative feedback ( $\beta$ ) if the bandwidth is extended to 5 *MHz*? [5]
  - ii) What will be the new gain after negative feedback is introduced? [1]
- d) Design a *Wien-bridge oscillator* using op-amp to generate a sinusoidal waveform of frequency 1 KHz. [5]

## Question 3 [25]

• `

a) For the circuit of figure 3.1.



figure 3.1

|    | 1)   | Calculate the:                                            |             |
|----|------|-----------------------------------------------------------|-------------|
|    |      | Output power                                              | [2]         |
|    |      | • Input power                                             | [2]         |
|    |      | • Power handled by each output transistor                 | [2]         |
|    |      | • Circuit efficiency for an input of 12 V <sub>rms</sub>  | [1]         |
|    | ii)  | Calculate the:                                            |             |
|    |      | Maximum input power                                       | [2]         |
|    |      | Maximum output power                                      | [2]         |
|    |      | • Input voltage for maximum power operation               | [2]         |
|    |      | • Power dissipated by the output transistors at this      | [2]         |
|    | iii) | Calculate the maximum power dissipated by the output      | transistors |
|    |      | and the voltage at which this occurs                      | [4]         |
| b) | For  | the Harmonic Distortion reading: $D_2 = 0.1, D_3 = 0.02,$ | and $D_4 =$ |
| ,  |      | , with $I_1 = 4 A$ and $R_c = 8\Omega$ . Calculate the:   | •           |
|    | i)   | Total Harmonic Distortion                                 | [2]         |
|    | ii)  | Fundamental power component                               | [2]         |

iii)Total power[2][2]

#### Question 4 [25]

a) Determine the following parameters:  $I_{DQ}$ ,  $V_{DSQ}$ ,  $V_{DS(sat)}$ ,  $g_m$ ,  $r_o$  and  $A_v$  of a MOSFET circuit. The circuit in figure 4.1 assumes the following parameters:  $V_{GSQ} = 2.12V$ ,  $V_{DD} = 5V$ ,  $V_{GS} = 1.82V$  and  $R_D = 2.5K\Omega$ . The transistor parameters are  $V_{TN} = 1V$ ,  $k_n = 0.80mA/V^2$  and  $\lambda = 0.02V^{-2}$ . Assume the transistor is biased in the saturation region. [14]



figure 4.1

b) For the circuit in figure 4.2 determine:  $R_{Thi}$ ,  $C_i$  and  $f_{Hi}$ . Where  $A_v = -3$ ,  $C_G = 0.01 \mu F$ ,  $C_c = 0.5 \mu F$ ,  $C_s = 2 \mu F$ ,  $C_{gd} = 2 p F$ ,  $C_{gs} = 4 p F$ . [11]



figure 4.2

## Question 5 [25]

a) Define the following terms:

| i.   | Stability    | [2] |
|------|--------------|-----|
| ii.  | Gain Margin  | [3] |
| iii. | Noise        | [1] |
| iv.  | Phase Margin | [3] |

b) Figure 5.1 shows a shunt-shunt feedback amplifier. The op-amp has an open loop gain A, differential input resistance  $R_{id}$  and output resistance  $r_o$ . Derive the following expressions:

[5]

[3]

[2]

[3]

[3]

- i. Open loop gain A
- ii. Feedback factor  $\beta$
- iii. Closed loop gain  $A_f$
- iv. Input resistance  $R_{if}$
- v. Output resistance  $R_{of}$



figure 5.1