University of Swaziland

Faculty of Science

Department of Electrical and Electronic Engineering Main Examination 2016

Title of Paper	$:$	Analogue Design II
Course Number	$:$	EE323

Time Allowed : 3 hrs
Instructions
:

1. This paper contains five (5) questions
2. Answer an four (4) questions
3. Each question carries $\mathbf{2 5}$ marks

Question 1 [25]

a) Fill in the blank(s) with appropriate word(s)
i) A MOSFET is a \qquad controlled \qquad carrier device.
ii) Enhancement type MOSFETs are normally \qquad devices while depletion type MOSFETs are normally \qquad
\qquad devices.
iii) The Gate terminal of a MOSFET is isolated from the semiconductor by a thin layer of \qquad .
iv) The MOSFET cell embeds a parasitic in its structure.
v) The gate-source voltage at which the \qquad layer in a MOSFET is formed is called the \qquad voltage.
vi) The thickness of the \qquad layer remains constant as gate source voltage is increased beyond the \qquad voltage.
b) Determine the voltage gain, input and output impedance with feedback for voltage series feedback having $A=-100, R_{i}=10 k \Omega, R_{o}=20 k \Omega$ for feedback of $\beta=-0.1$.
c) List out two characteristics of feedback amplifier.
d) How does an oscillator differs from an amplifier
e) Name two low frequency oscillators

Question 2 [25]

a) The feedback amplifier shown in figure 2.1 makes use of an op - amp with an open - loop gain $A=\mathbf{1 0}^{\mathbf{5}}$.

figure 2.1
i) How much is the output voltage (v_{o}) for input signal $v_{s}=2 \mathrm{mV}$ in the circuit shown
b) Figure 2.2 shows an op - amp circuit with voltage series through R_{1} and R_{2}. The open - loop gain of the op - amp is $A=10^{4}$ and input impedance is $100 \mathrm{~K} \Omega$.

figure 2.2
i) Find the gain and input impedance of the amplifier with feedback.
c) An amplifier has a bandwidth of 500 KHz and an open voltage gain of 100.
i) What should be the amount of negative feedback (β) if the bandwidth is extended to 5 MHz ?
ii) What will be the new gain after negative feedback is introduced?
[1]
d) Design a Wien-bridge oscillator using op-amp to generate a sinusoidal waveform of frequency 1 KHz .

Question 3 [25]

a) For the circuit of figure 3.1.

figure 3.1
i) Calculate the:

- Output power
- Input power
- Power handled by each output transistor
- Circuit efficiency for an input of $12 V_{r m s}$
ii) Calculate the:
- Maximum input power
- Maximum output power
- Input voltage for maximum power operation
- Power dissipated by the output transistors at this
iii) Calculate the maximum power dissipated by the output transistors and the voltage at which this occurs
b) For the Harmonic Distortion reading: $D_{2}=0.1, D_{3}=0.02$, and $D_{4}=$ 0.01 , with $I_{1}=4 \mathrm{~A}$ and $R_{c}=8 \Omega$. Calculate the:
i) Total Harmonic Distortion
ii) Fundamental power component
iii) Total power

Question 4 [25]

a) Determine the following parameters: $I_{D Q}, V_{D S Q}, V_{D S(s a t)}, g_{m}, r_{o}$ and A_{v} of a MOSFET circuit. The circuit in figure 4.1 assumes the following parameters: $\quad V_{G S Q}=2.12 \mathrm{~V}, V_{D D}=5 \mathrm{~V}, V_{G S}=1.82 \mathrm{~V}$ and $R_{D}=2.5 \mathrm{~K} \Omega$. The transistor parameters are $V_{T N}=1 V, k_{n}=0.80 \mathrm{~mA} / V^{2}$ and $\lambda=$ $0.02 \mathrm{~V}^{-2}$. Assume the transistor is biased in the saturation region.

figure 4.1
b) For the circuit in figure 4.2 determine: $R_{T h i}, C_{i}$ and $f_{H i}$. Where $A_{v}=$ $-3, C_{G}=0.01 \mu F, C_{c}=0.5 \mu F, C_{s}=2 \mu F, C_{g d}=2 p F, C_{g s}=4 p F$.

figure 4.2

Question 5 [25]

a) Define the following terms:
i. Stability
ii. Gain Margin
iii. Noise
iv. Phase Margin
b) Figure 5.1 shows a shunt-shunt feedback amplifier. The op-amp has an open loop gain A, differential input resistance $R_{i d}$ and output resistance r_{o}. Derive the following expressions:
i. Open loop gain A
ii. Feedback factor β
iii. Closed loop gain A_{f}
iv. Input resistance $R_{\text {if }}$
v. Output resistance $R_{\text {of }}$

figure 5.1

