# University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Supplementary Examination 2016

| Title of Paper | : | Analogue Design II |
|----------------|---|--------------------|
| Course Number  | : | EE323              |

۶,

| Time Allowed | : | 3 hrs                                     |
|--------------|---|-------------------------------------------|
| Instructions | : |                                           |
|              |   | 1. This paper contains five (5) questions |
|              |   | 2. Answer all questions                   |
|              |   | 3. Each question carries 20 marks         |

### THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of six (6) pages

## Question 1 [20]

- a) Define the following terms:
  - i) Feedback
  - ii) Sensitivity
  - iii) Barkhausen Criterion
  - iv) Oscillator
  - v) Power Amplifier Efficiency
- b) Give the effect of negative feedback on amplifier characteristics [8]
  NB: Use *increase* and *decrease* to complete the table below

[5]

| Characteristics   | type of feedback |                |               |               |  |
|-------------------|------------------|----------------|---------------|---------------|--|
|                   | Current-series   | voltage-series | voltage-shunt | current-shunt |  |
| Gain              |                  |                |               |               |  |
| Bandwidth         |                  |                |               |               |  |
| Input resistance  |                  |                |               |               |  |
| Output resistance |                  |                |               |               |  |
|                   |                  |                |               |               |  |

c) Design a *Wien-bridge oscillator* using op-amp to generate a sinusoidal waveform of frequency *1 KHz*. [7]

### Question 2 [20]

For a series-series feedback BJT amplifier shown in *Figure 2.1*. The input variable is the voltage  $v_1$  and the output variable is the voltage  $v_2$ . Assume  $\beta = 100, r_{\pi} = 2.5K\Omega, \alpha = \frac{\beta}{1+\beta}, r_e = \frac{\alpha}{g_m}, r_0 = \infty, r_x = 0, V_T = 25mV, R_1 = 100\Omega, R_2 = 1K\Omega, R_3 = 20K\Omega$  and  $R_4 = 10K\Omega$ 



Figure 2.1

| a. | Redraw the circuit on <i>Figure 2.1</i> with the feedback path removed. | [2] |
|----|-------------------------------------------------------------------------|-----|
|    | NB: your diagram should be clearly labelled.                            |     |

## b. Calculate the:

| i.   | Transconductance $\frac{l_{e2}}{v_1}$ | [6] |
|------|---------------------------------------|-----|
| ii.  | Voltage gain $v_2/v_1$                | [4] |
| iii. | Input resistance $R_A$                | [4] |
| iv.  | Output resistance $R_b$               | [4] |

2

## Question 3 [20]

i)

a) For the circuit of *Figure 3.1*.



## Figure 3.1

....

| 1)   | Calculate the:                                                                  |     |  |  |  |  |
|------|---------------------------------------------------------------------------------|-----|--|--|--|--|
|      | Output power                                                                    | [2] |  |  |  |  |
|      | • Input power                                                                   | [2] |  |  |  |  |
|      | • Power handled by each output transistor                                       | [2] |  |  |  |  |
|      | • Circuit efficiency for an input of 12 V <sub>rms</sub>                        | [1] |  |  |  |  |
| ii)  | Calculate the:                                                                  |     |  |  |  |  |
|      | Maximum input power                                                             | [1] |  |  |  |  |
|      | Maximum output power                                                            | [1] |  |  |  |  |
|      | • Input voltage for maximum power operation                                     | [1] |  |  |  |  |
|      | • Power dissipated by the output transistors at this                            | [1] |  |  |  |  |
| iii) | Calculate the maximum power dissipated by the output transistors and the voltag |     |  |  |  |  |
|      | at which this occurs                                                            | [4] |  |  |  |  |
|      |                                                                                 |     |  |  |  |  |

b) For the Harmonic Distortion reading:  $D_2 = 0.1, D_3 = 0.02, and D_4 = 0.01, with I_1 = 4 A and R_c = 8\Omega$ . Calculate the: i) Total Harmonic Distortion

| i)   | Total Harmonic Distortion   | [2] |
|------|-----------------------------|-----|
| ii)  | Fundamental power component | [2] |
| iii) | Total power                 | [1] |

#### Question 4 [20]

**Figure 4.1** shows a series-shunt amplifier in which the three MOSFETs are sized to operate at  $|V_{ov}| = 0.2 V$ . Let  $|V_t| = 0.5V$  and  $|V_A| = 10 V$ . The current source utilizes single transistors and thus have output resistances equal to  $r_0$ .



Figure 4.1

- a) Assume the loop gain to be large, what do you expect the closed loop voltage  $\frac{v_o}{v_s}$  to be approximately? [1]
- b) If  $V_s$  has a zero dc component, find the dc voltages at nodes  $S_1, G_2, S_3$  and  $G_3$  [4]
- c) Find the open loop gain circuit. Calculate the gain of each of the three (3) stages and the overall voltage gain, A [15]

#### Question 5 [20]

- a) Fill in the blank(s) with appropriate word(s) [10]
  - i) A MOSFET is a \_\_\_\_\_ controlled \_\_\_\_\_ carrier device.
  - ii) Enhancement type MOSFETs are normally \_\_\_\_\_\_ devices while depletion type MOSFETs are normally \_\_\_\_\_\_ devices.
  - iii) The Gate terminal of a MOSFET is isolated from the semiconductor by a thin layer of \_\_\_\_\_\_.
  - iv) The MOSFET cell embeds a parasitic \_\_\_\_\_\_ in its structure.
  - v) The gate-source voltage at which the \_\_\_\_\_ layer in a MOSFET is formed is called the \_\_\_\_\_ voltage.
  - vi) The thickness of the \_\_\_\_\_\_ layer remains constant as gate source voltage is increased beyond the \_\_\_\_\_\_ voltage.
- b) Determine the small-signal voltage gain, input and output resistances of a commonsource amplifier. For the circuit shown in *Figure 5.1*, the parameters are:  $V_{DD} = 10V, R_1 = 70.9K\Omega, R_2 = 29,1K\Omega$  and  $R_D = 5K\Omega$ . The transistor parameters are:  $V_{TN} = 1.5V, K_n = 0.5mA/V^2$ , and  $\lambda = 0.01V^{-1}$ . Assume  $R_{si} = 4K\Omega$  and  $g_m = 2k_n(V_{GSQ} - V_{TN})$



Figure 5.1