UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING
DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING DIGITAL SYSTEMS II
COURSE CODE - EE324
MAIN EXAMINATION

MAY 2016

DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO CANDIDATES

1. There are FOUR questions in this paper. Answer all the questions.
2. Show all your steps clearly in any calculations/work.
3. State clearly any assumptions made.
4. Start each new question on a fresh page.
5. Make sure that this exam contains 3 pages including this one.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION ONE (25 marks)

a. With the help of block diagrams, define RAM and ROM? What is the difference between PLA and PAL?
b. A $16 \mathrm{~K} \times 4$ memory uses coincident decoding by splitting the internal decoder into X selection and Y-selection.
(i) What is the size of each decoder and how many AND gates are required for decoding the address?
(ii) Determine the X and Y selections lines that are enabled when the input address is the binary equivalent of 4,000 .

QUESTION TWO (25 marks)

a. Explain in detail how Hamming code is used for error detection and correction. [10]
b. Obtain the 15 -bit Hamming code word for the 11-bit data word 11001101011 .
c. Given the above 11-bit data word, generate the composite word for the Hamming code that corrects single errors and detects double errors.

OUESTION THREE (20 marks)

Consider the following four functions $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~F} 3$, and F 4 of the inputs x, y and z .

$$
\begin{aligned}
& \mathrm{F} 1(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,5) \\
& \mathrm{F} 2(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(2,3,5,7) \\
& \mathrm{F} 3(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,3,5,6,7) \\
& \mathrm{F} 4(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,3,5,7)
\end{aligned}
$$

a. Tabulate the read-only memory (ROM) truth table and Implement the four functions above using the ROM.
b. Implement the four functions above using the programmable array logic (PAL). NOTE: please write the product term at the output of each AND gate.

OUESTION FOUR (30 marks)

Complete the design for the state machine described in the state diagram below.

a. Write out the state table. Assign states using a simple binary order $(\mathrm{S} 0=\mathrm{AB}=$ 00). The write out the transition table.
b. Write out the flip-flop input excitation table assuming JK flip-flops are used.
(Note that $\mathrm{Q}^{+}=\mathrm{J} \cdot \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \cdot \mathrm{Q}$.)
c. Draw the circuit diagram.
d. What is the difference between Moore machines and Mealy machines? Is the above circuit Moore or Mealy machine?

JK Flip Flop characteristic Tables		
J	K	Q^{+}
0	0	Q
0	1	0
1	0	1
1	1	Q^{\prime}

