UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE
 Department of Electrical and
 Electronic engineering

July 2016

SUPPLEMENTARY EXAMINATION

of the paper:
 Fundamentals of Power Engineering

Course Code: EE351
Time allowed: Three Hours

Instructions:

1. Answer all questions in the following pages.
2. The answer must be written in the space provided in the question book; those in elsewhere considered invalid. Use the answer book as a scratch pad. Both question and answer book must be handed-in and marked with name and ID.
3. This paper has 7 pages, including this page and a blank page for question Q3.

Q1: (20 pts) The Uniswa distribution system structure is shown below. Fill in the blank boxes the proper data indicated near the box. (pts assigned in the figure)

Q2: (20 pts) Draw a per-unit reactance diagram for the 3-Ф system shown in Fig. Q2-1. Choose a 80 MVA , 66 KV base at the transmission line. (8 pts for structure; -2 pts for each component mistake until a total 12)

Q3: (20 pts) 3 impedances, $\mathbf{Z}_{\mathrm{a}}=3<0^{\circ}$, $\mathbf{Z}_{\mathrm{b}}=4<60^{\circ}$, and $\mathbf{Z}_{\mathrm{c}}=5<90^{\circ} \Omega$, are connected in Δ. This Δ-connected load is supplied by a 60 Hz , balanced positive sequence Δ connected 3-phase source, $\mathbf{E}_{\text {ab }}=$ $240 \angle 0 \mathrm{~V}$,. Determine (i)(6 pts). the line currents; (ii)(6 pts). the power drawn by each impedance;

Fig. Q3-1
(iii)(4 pts). the reactive power in each phase; and (iv)(4 pts). the over-all power factor of the load.

Q4: (20 pts) The system is shown in Fig. Q4-1. Improve the system PF with a capacitor, its $\mathrm{X}_{\mathrm{C}}=1.5 \Omega$. If no load, the capacitor is also off the circuit. If tie X_{C} at load side, calculate the $\operatorname{VR}(10$ pts) and power efficiency (10 pts).

Fig. Q4-1

Q5: (20 pts) The power system shown in Fig. Q5-1 is a part of Q2. (i) Convert the one-line diagram into circuit diagram. (ii) Solve the no load voltage V_{NL} and (iii) the full load voltage V_{FL}. And (iv) calculate
 the voltage regulation.
(note the $\Delta-\mathrm{Y}$ connection and the load is resistive) (5 pts each)

