UNIVERSITY OF SWAZILAND
 MAIN EXAMINATION, FIRST SEMESTER
 DECEMBER 2015

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC

 ENGINEERINGTITLE OF PAPER: ANALOGUE DESIGN III COURSE CODE: EE421

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries $\mathbf{2 5}$ marks.
2. If you think not enough data has been given in any question you may assume any reasonable values.
3. Some useful formulas are given in the last page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

Consider the BJT amplifier shown in Figure-Q1.

Figure-01
(a) Under no input signal, calculate the collector voltage of Q_{1} and Q_{2}, and also emitter and base voltage of Q_{3}. You may assume that the gains of the transistors are high. (6 marks)
(b) (i) Draw the common mode half circuits and derive an expression for the common mode gain for a single ended output, assuming that the impedance offered by the current source is R_{o}.
(ii) Calculate the common mode gain in (i) above.
(iii) What is the common mode gain if the output is taken differentially? Calculate this value if R_{1} and R_{2} are having a tolerance of $\pm 1 \%$.
(iv) Find an expression for the common mode input impedance and calculate its value.

Note:
(i) Output impedance of the current source $\approx r_{o}\left[1+\frac{R_{E}}{\frac{R_{E}+R_{B}}{\beta}+r_{e}}\right]$, in terms of usual notation.
(ii) Assume that the $\beta=100, V_{A}=80 \mathrm{~V}$ and $r_{\mu}=\infty$, unless otherwise stated.

QUESTION TWO (25 marks)

In the NMOS amplifier shown in Figure-Q2, the devices Q_{1} and Q_{2} are matched.

Figure-Q2
(a) Calculate the value of the differential input voltage $V_{1}-V_{2}$, which will result $I_{D 2}=0.6 \mathrm{~mA}$.
(b) A differential input signal v_{d} is applied to the amplifier. Draw the differential half circuits for mid band signals and calculate the differential gains $\frac{v_{01}}{v_{d}}, \frac{v_{o 2}}{v_{d}}$ and $\frac{v_{o}}{v_{d}}$ proving any formula you use.
(c) Calculate the maximum input common mode voltage range if the voltage drop across the current source is $V_{c s} \geq 3 V$.
(d) (i) Find the value of input offset voltage of the amplifier using the data given below.

$$
\begin{array}{ll}
\text { Tolerance of } R_{1} \text { and } R_{2} & = \pm 2 \% \\
\text { Tolerance of } \frac{w}{L} \text { ratio } & = \pm 4 \% \\
\text { Tolerance of } V_{t} & = \pm 0.2 \% \tag{4marks}
\end{array}
$$

(ii) Estimate the output dc voltage V_{o} when the inputs $V_{1}=V_{2}=0$ if the tolerances given in d(i) are applicable.

QUESTION THREE (25 marks)

(a) A cascode NMOS amplifier is shown in Figure-Q3, in which the transistors Q_{1} and Q_{2} are matched.

> Figure - Q3

Assume the following data of the devices given with usual notation.

$$
g_{m}=1.35 \frac{\mathrm{~mA}}{\mathrm{~V}} \quad \chi=0.2 \quad r_{o}=25 k \quad C_{g s}=18 f F \quad C_{g d}=4 f F \quad C_{d b}=5 f F
$$

(a) Show that the output impedance R_{o} is given by, $R_{o}=r_{o 1}+r_{o 2}+r_{o 1} r_{o 2}\left(g_{m 2}+g_{m b 2}\right)$. (6 marks)
(b) Derive an expression for the mid-band gain $\frac{v_{o}}{v_{i}}$ and calculate its value.
(7 marks)
(c) Finding the Miller's components or otherwise, calculate the upper cutoff frequency f_{H}.
(9 marks)
(d) Calculate the unity gain frequency f_{T} of the amplifier.

Note: You may use, $R_{i 2}=\frac{R_{L}+r_{o 2}}{1+r_{o 2} g_{m 2}^{l}}$

OUESTION FOUR (25 marks)

(a) Consider the IC amplifier shown in Figure-Q4(a), with the following data.
$K_{1}=5 \frac{m A}{V^{2}}$
$K_{2}=3 \frac{m A}{v^{2}}$
$K_{3}=2 \frac{m A}{V^{2}}$
$\left|V_{t}\right|=1.5 V$
$\left|V_{A}\right|=70 \mathrm{~V}$
$I_{\text {ref }}=0.8 \mathrm{~mA}$
(i) Calculate the value of R and the bias current of Q_{3}.
(4 marks)
(ii) Derive an expression for the voltage gain $\frac{v_{0}}{v_{i}}$ and calculate its value.
(5 marks)
(iii) Estimate the maximum peak to peak value of the output signal at v_{0}, which can be obtained without any distortion.
(4 marks)

Figure - Q4(a)

Figure-Q4(b)
(b) In Figure-Q4(b), the devices Q_{1} and Q_{2} are enhancement and depletion type respectively. You may assume the data given below.

$$
\begin{array}{llrr}
W_{1}=80 \mu m & L_{1}=5 \mu m \\
V_{t D}=-2 V & \left.\mu C_{O X}=150 \frac{\mu A}{V^{2}} \quad W_{2}=5 \mu m \quad V_{A} \right\rvert\,=50 V \quad \chi=0.2 & V_{t E}=1 V
\end{array}
$$

(i) Calculate the drain current of Q_{1} at no signal.
(ii) Draw the small signal equivalent circuit considering the body effect and the output resistance. Hence derive an expression for the voltage gain $\left(\frac{v_{o}}{v_{i}}\right)$ and calculate its value.

QUESTION FIVE (25 marks)

(a) A circuit of a dc voltage regulator using a NPN Darlington pass transistor is shown in Figure-Q5(a).
(i) Calculate the output voltage.
(ii) Estimate the minimum value of $V_{\text {in }}$ that can be used with the regulator.
(iii) If the load current is $1 A$, calculate the power dissipation in the pass transistor for the case in (ii) above.

(b) The Figure-Q5(b) is a simplified circuit showing an IC regulator connected with a load resistance of R_{L} associated with a load capacitance of C_{b}. The output capacitor of the regulator is shown as C_{o}, with its series equivalent resistance R_{C}. You may assume the following data.
$C_{o}=10 \mu F \quad R_{C}=2 \Omega \quad \mathrm{C}_{\mathrm{b}}=0.5 \mu \mathrm{~F} \quad \mathrm{R}_{\mathrm{L}}=33 \Omega$
$r_{d s(Q)}=65 \Omega \quad \mathrm{c}_{\mathrm{gs}(\mathrm{Q})}=200 \mathrm{pF}$
(i) Find the ratio of $\frac{R_{1}}{R_{2}}$, for an output voltage $V_{o}=3.3 \mathrm{~V}$.
(ii) If the resistances R_{1} and R_{2} are much larger than the R_{L}, R_{C} and $r_{d s(Q)}$, investigate the stability of the circuit, clearly showing the steps followed. The unity gain crossover frequency of the loop gain is 14 kHz .

1. SOME USEFUL MOSFET EQUATIONS

$i_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(v_{G S}-v_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$ in triode region
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{w}{L}\left(v_{G S}-v_{t}\right)^{2}$ in saturation region
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-v_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$ in saturation region with Channel Modulation effect $V_{A}=\frac{1}{\lambda}$
2. Unless otherwise stated $V_{B E(O N)}=0.6 \mathrm{~V}$ and $V_{T}=0.025 \mathrm{~V}$.

