UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION JULY 2016

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

.

÷

- 1. There are four questions in this paper. Answer all questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS FIVE (5) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) (i) State the difference between Von-Neumann and Harvard architectures.

(2 marks)

(ii) State some features of a CISC type microprocessor.

(2 marks)

(iii) In an assembly program for a 16F84A, includes instructions 'crunch equ 12Dh' and 'index equ 1Eh'. Using them, write the machine instructions (op codes) for the following assembly statements.
 and wf index 0

unuwj	macs, 0	USJ	таел, Э
addlw	.35	goto	c r unch

(4 marks)

(b) A section of a program using 16F84A with a 8MHz crystal is shown in Figure-Q1.

bsf	status,5
movlw	b'11000101'
movwf	option_reg

Figure-Q1

(i) State what is expected from the three statements in Figure-Q1.

(4 marks)

(ii) Calculate the frequency of timer input signal.

(3 marks)

- (c) An application based on a 16F84A using a crystal clock oscillator, requires the timer to overflow in each 8ms.
 - (i) Select a suitable one from 1.8432MHz, 2.4576MHz, 3.579MHz and 4MHz crystals, which will give a minimum timing error. Also justify your answer.

(6 marks)

(ii) What is the percentage timing error expected for your selection?

(2 marks)

(iii) How do you configure the option register to meet your selection in (i) above?(2 marks)

QUESTION TWO (25 marks)

Consider the subroutine shown in Figure-Q2. Assume that it is run in a 16F84A clocked with a *8MHz* crystal.

(i) Calculate the delay that will be provided by this subrouti	ne.
--	-----

- (ii) How do you obtain a delay as close as possible to 0.5ms?
- (iii) Construct a subroutine that will give a delay as close as possible to 10ms using (ii) above with an aid of a flow chart. Your method must aim for a short program length and must show the necessary calculations required.
- (iv) Write the assembly code for (iii) above.

(4 marks)

(11 marks)

(4 marks)

(3 marks)

(v) What is the actual delay produced by your subroutine in (iii) above?

(3 marks)

delay loop	movlw movwf nop nop decfsz goto return	D2 reg reg,1 loop
	return	

Figure-Q2

Page 3 of 5

QUESTION THREE (25 marks)

- (a) The PortB(0) to PortB(6) pins of a 16F84A is connected to a common cathode seven segment LED display 'a' to 'g' respectively. The microcontroller runs on a RC clock oscillator of 60KHz.
 - Draw the complete circuit diagram marking the 16F84A pin numbers clearly.
 You may show the clock oscillator R and C without values.

(5 marks)

(ii) Construct a program flow chart/s with sufficient details and labels, which will display '16F' character by character in a continuous loop. Each character must be visible for 0.5sec. The flow charts of any subroutines must be given and the calculation of the values used must also be shown.

(14 marks)

- (b) A serial temperature sensor is connected to the SPI communication port of a 16F877 which acts as the master. The microcontroller is running on a 3.579MHz crystal oscillator.
 - Draw a connection diagram between 16F877 and the sensor, giving the usual pin names. Also mark the relevant pin numbers of 16F877 used for this case.

(3 marks)

(ii) If the SSPSTAT and SSPCON registers are configured as 40h and 21h respectively, comment on the data rate limitations of the sensor.

(3 marks)

QUESTION FOUR (25 marks)

- (a) In an assembly program for 16F84A, the *INTCON* register is set to *A8h*.
 - (i) Describe the settings of the *INTCON* register.

(2 marks)

Page 5 of 5

(ii) When the program is executed, at a certain point the value of *INTCON* register is *2Dh*. Explain what is described by the *INTCON* register at this instant.

(3 marks)

(iii) State the essential features to be included in an interrupt service routine.

(3 marks)

(iv) The microcontroller is provided with a 4.096MHz crystal oscillator and it is required to produce an interrupt in every $500\mu s$. Show a simple method to achieve this and give the settings of relevant registers. What is the value of *INTCON*, just after such an interrupt?

(5 marks)

- (b) An application uses the Analog to Digital Converter (ADC) of a 16F877.
 - (i) The ADC is configured to have external voltage reference, four analog inputs, input channel 1 selected for the conversion and ADC turned ON. If the conversion is not yet started, show the settings of the relevant registers. State your assumptions.

(5 marks)

(ii) If the conversion is started and not yet finished, show the contents of these registers.

(2 marks)

(iii) If a 4.096MHz crystal oscillator is used, select values for ADCS1 and ADCS0 bits in the ADCON0 register justifying the answer.

(3 marks)

(iv) What is the minimum acquisition time and the minimum conversion time considering the values in (iii) above?

(2 marks)

SS

PIC 16F84A

File Addre	SS	F	ile Addre
00h	Indirect addr.(1)	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	有这个些本于是		87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	88h
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch
4Fh 50h			CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	י Z	DC	C
bit 7							bit 0

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two's complement of the second operand. For rotete (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Data Page 1 of 9

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	RW-1	R/W-1	R/W-1	R/W-1
ſ	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7							bit 0

RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

0 = Increment on low-to-high transition on RA4/T0CKI pin

PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits

Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1.8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W- 0	R/W-x	
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	
bit 7							bit 0	

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

0 = Disables the EE Write Complete interrupt

TOIE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

TOIF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state

16F84A and 16F877

, *****

Mnemo	onic.				14-Bit	Opcode	•	Status	
ADDWFf, dAdd W and fANDWFf, dAND W with fCLRFfClear fCLRW-Clear WCOMFf, dComplement fDECFf, dDecrement fDECFSZf, dDecrement fINCFf, dIncrement fINCFSZf, dIncrement fINCFSZf, dIncrement fNOVFf, dInclusive OR W with fMOVFf, dMove fMOVWFfMove W to fNOP-No OperationRLFf, dRotate Right f through CarrySUBWFf, dSubtract W from fSWAPFf, dSwap nibbles in fXORWFf, dExclusive OR W with f	Description	Cycles	MSD			LSb	Affected	Notes	
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	1	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	XXXXXX	z	
COMF	f, d		1	00	1001	dfff	ffff	z	1,2
	f, d	Decrement f	1	00	0011	dfff	iiii	Z	1,2
DECFSZ	1, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	1111		1,2,3
INCF	ſ, d	Increment f	1	00	1010	dfff	<u>tttt</u>	z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	IIII	Z	1,2
MOVWF	f	Move W to f	1	00	0000	1111	1111		
NOP	*	No Operation	1	00	0000	0)000	0000]	
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	1111	l c	1.2
SUBWF	t d		1	00	0010	dfff	1111	C.DC.Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	attt	1111		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	attt	iiii	z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	15				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1.2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	1111	1	3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	1111		3
	-	LITERAL AND CONTROL	OPERAT	IONS			1		
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	ĸ	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	ĸ	Go to address	2	10	1kkk	kkkk	kkkk	ł	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z	
MOVLW	ĸ	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C.DC.Z	
XORLW	ĸ	Exclusive OR literal with W	1	11	1010	kkkk		Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.
 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is

executed as a NOP.

.

.

Pin Diagram

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7		•	******		·		bit 0

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In I²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI_mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on failing edge of SCK

0 = Data transmitted on rising edge of SCK

In I²C Master or Slave mode:

1 = Input levels conform to SMBus spec

0 =Input levels conform to I²C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P: STOP bit

(I²C mode only. This bil is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)

0 = START bit was not detected last

RW: Read/Write bit Information (I²C mode only)

This bit holds the RAW bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In J²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

· .

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPMO
t7							bit 0
laster mod = A write t = No collis lave mode	io SSPBUF wa ion Fregister is w)	etect bit as attempted r rritten while st				be cleared in	
		w Indicator bi	ł				
mode, ti mode, ti (Must bi = No over <u>n I²C mode</u> = A byte is	yte is received he user must i he overflow bi e cleared in so flow <u>:</u> s received whi Must be clear	i while SSPBL read the SSPI t is not set, sii oftware.) le the SSPBU ed in software	BUF, even if o nce each ope F is holding th	only transmitti ration is initia	ng data, to av ted by writing	old overflows to the SSPBI	. In Master UF register.
		rial Port Enab	la hit				A.
= Enables = Disables 1 ² C mode Vhen enabl = Enables	ed, these pins serial port an s serial port ar , ed, these pins the serial por	a must be prop d configures t d configures and configures and configures d configures	SCK, SDO, S these pins as perty configur res the SDA a	DI, and SS as I/O port pins ed as input of and SCL pins	s the source of r output as the source		
KP: Clock	Polarity Selec	t bit					
) = Idle stat n 1 ² C Slave CK release L = Enable (e for clock is a e for clock is a <u>mode</u> : e control clock ock low (clock <u>er mode:</u>		ed to ensure :	data setup tin	ne.)		
000 = SPI 001 = SPI 010 = SPI 011 = SPI 100 = SPI 101 = SPI $110 = I^2C$ $111 = I^2C$ $000 = I^2C$	Master mode Master mode Master mode Slave mode, Slave mode, Slave mode, Slave mode, Slave mode,	IO-bit address clock = Fosc	2/4 5/16 5/64 2 output/2 55 pin co 55 pin co 1/ (4 * (SSPA)	ntrol enabled ntrol disabled DD+1))	l. SS can be u	used as I/O pi	ο.

PIC16F877/876 REGISTER FILE MAP

ļ	File Address	,	File Address		File Address		Fille Addre:
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr. ^(*)	100h	Indirect addr. ^(*)	1801
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	1811
PCL	02h	PCL	82h	PCL	102h	PCL	1821
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	1831
FSR	04h	FSR	84h	FSR	104h	FSR	1841
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	1861
PORTC	07h	TRISC	87h		107h		1871
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	QAh	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	108h	INTCON	18B
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved	18E
TMR1H	OFh		8Fh	EEADRH	10Fh	RESERVED	18F1
T1CON	10h		90h		110h 🗠		190ł
TMR2	11h	SSPCON2	91h		111h		1911
T2CON	12h	PR2	92h		112h		1921
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		1941
CCPR1L	15h		95h		115h		1951
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General Purpose	117h	General Purpose	1971
RCSTA	18h	TXSTA	98h	Register	118h	Register	1981
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	1991
RCREG	1Ah	and the rest	9Ah		11Ah		19A
CCPR2L	1Bh		9Bh	1	118h		19B
CCPR2H	1Ch		9Ch		11Ch		1903
CCP2CON	1Dh		9Dh		11Dh		19D
ADRESH	1Eh	ADRESL	9Eh		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F1
	20h		A0h		120h		1A0
General		General		General		General	
Purpose Register		Purpose Register		Purpose Register		Purpose Register	
-		80 Bytes		80 Bytes		80 Bytes	400
96 Bytes			EFh		16Fh		1EF
		accesses	FOh	accesses	170h	accesses	1F0
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h - 7Fh	1FF
Bank 0	75.0	Bank 1	i FFN	Bank 2	1 2 5 58	Bank 3	10.1.1

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

Note 1: These registers are not implemented on the PIC16F876. 2: These registers are reserved, maintain these registers clear.

ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	*****	ADON
bit 7							bit 0

ADCS1: ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

, ·

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)⁽¹⁾

110 = channel 6, (RE1/AN6)⁽¹⁾

111 = channel 7, (RE2/AN7)⁽¹⁾

GO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADFM	1000 (<u>114</u> /1554) 2000 (1190)		Carlins State	PCFG3	PCFG2	PCFG1	PCFG0	
bit 7							bit 0	

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

• •

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	ANG ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	A	A	Α	A	A	A	A	VDD	Vss	8/0
0001	A	A	A	Α	VREF+	A	Α	A	RA3	Vss	7/1
0010	D	D	D	Α	Α	A	A	A	VDD	Vss	5/0
0011	D	D	D	A	VREF+	A	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	A	D	A	A	VDD	 Vss 	3/0
0101	D	D	D	D	VREF+	D	A	A	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	A	A	Α	Α	VREF+	VREF-	A	A	RA3	RA2	6/2
1001	D	D	A	Α	A	A	A	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	A	Α	A	RA3	Vss	5/1
1011	D	D	A	Α	VREF+	VREF-	A	A	RA3	RA2	4/2
1100	D	D	D	A	VREF+	VREF-	Α	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	A	A	RA3	RA2	2/2
1110	D	D	D	D	Ð	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown