UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION JULY 2016

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are four questions in this paper. Answer all questions. Each question carries 25 marks.
2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

(a) (i) State the difference between Von-Neumann and Harvard architectures.
(ii) State some features of a CISC type microprocessor.
(iii) In an assembly program for a 16 F 84 A , includes instructions 'crunch equ 12Dh' and 'index equ IEh'. Using them, write the machine instructions (op codes) for the following assembly statements.

| andwf index,0 | bsf index,3 |
| :--- | :--- | :--- |
| addlw .35 | goto crunch |

(b) A section of a program using 16F84A with a $8 M H z$ crystal is shown in Figure-Q1.

Figure-Q1
(i) State what is expected from the three statements in Figure-Q1.
(ii) Calculate the frequency of timer input signal.
(c) An application based on a 16F84A using a crystal clock oscillator, requires the timer to overflow in each 8 ms .
(i) Select a suitable one from $1.8432 \mathrm{MHz}, 2.4576 \mathrm{MHz}, 3.579 \mathrm{MHz}$ and 4 MHz crystals, which will give a minimum timing error. Also justify your answer.
(6 marks)
(ii) What is the percentage timing error expected for your selection?
(2 marks)
(iii) How do you configure the option register to meet your selection in (i) above?
(2 marks)

QUESTION TWO (25 marks)

Consider the subroutine shown in Figure-Q2. Assume that it is run in a 16F84A clocked with a 8 MHz crystal.
(i) Calculate the delay that will be provided by this subroutine.
(ii) How do you obtain a delay as close as possible to 0.5 ms ?
(iii) Construct a subroutine that will give a delay as close as possible to 10 ms using (ii) above with an aid of a flow chart. Your method must aim for a short program length and must show the necessary calculations required.
(iv) Write the assembly code for (iii) above.
(v) What is the actual delay produced by your subroutine in (iii) above?

delay	movlw	D2
loop	mowwf nop nop decfsz goto return reg,1 loop	

Figure-Q2

QUESTION THREE (25 marks)

(a) The $\operatorname{PortB}(0)$ to $\operatorname{PortB}(6)$ pins of a 16 F 84 A is connected to a common cathode seven segment LED display ' a ' to ' g ' respectively. The microcontroller runs on a RC clock oscillator of 60 KHz .
(i) Draw the complete circuit diagram marking the 16F84A pin numbers clearly. You may show the clock oscillator R and C without values.
(5 marks)
(ii) Construct a program flow chart/s with sufficient details and labels, which will display ' $16 F$ ' character by character in a continuous loop. Each character must be visible for 0.5 sec . The flow charts of any subroutines must be given and the calculation of the values used must also be shown.
(14 marks)
(b) A serial temperature sensor is connected to the SPI communication port of a 16 F 877 which acts as the master. The microcontroller is running on a 3.579 MHz crystal oscillator.
(i) Draw a connection diagram between 16F877 and the sensor, giving the usual pin names. Also mark the relevant pin numbers of 16F877 used for this case.
(ii) If the SSPSTAT and SSPCON registers are configured as 40 h and 21 h respectively, comment on the data rate limitations of the sensor.

QUESTION FOUR (25 marks)

(a) In an assembly program for 16 F 84 A , the INTCON register is set to $A 8 h$.
(i) Describe the settings of the $I N T C O N$ register.
(ii) When the program is executed, at a certain point the value of INTCON register is $2 D h$. Explain what is described by the $I N T C O N$ register at this instant.
(iii) State the essential features to be included in an interrupt service routine.
(3 marks)
(iv) The microcontroller is provided with a 4.096 MHz crystal oscillator and it is required to produce an interrupt in every $500 \mu \mathrm{~s}$. Show a simple method to achieve this and give the settings of relevant registers. What is the value of INTCON, just after such an interrupt?
(b) An application uses the Analog to Digital Converter (ADC) of a 16F877.
(i) The ADC is configured to have external voltage reference, four analog inputs, input channel 1 selected for the conversion and ADC turned $O N$. If the conversion is not yet started, show the settings of the relevant registers. State your assumptions.
(ii) If the conversion is started and not yet finished, show the contents of these registers.
(iii) If a 4.096 MHz crystal oscillator is used, select values for $A D C S 1$ and $A D C S 0$ bits in the $A D C O N O$ register justifying the answer.
(3 marks)
(iv) What is the minimum acquisition time and the minimum conversion time considering the values in (iii) above?

PIC 16F84A

STATUS REGISTER (ADDRESS 03h, 83h)

RW-0	RN-0	RW-0	R-1	R-1	RN-x	RN-x	RN-x	
IRP	RP1	RP0	$\overline{\text { TO }}$	$\overline{\mathrm{PD}}$	Z	Z	DC	C
bit 7								

Unimplemented: Maintain as ' 0 '
RPO: Register Bank Select bits (used for direct addressing)
$01=$ Bank 1 (80 h - FFh)
$00=$ Bank 0 (00h - 7Fh)
TO. Time-out bit
I = After power-up, CLRWDT instruction, or SLEEP instruction
$0=A$ WDT time-out occurred
$\overline{\mathrm{PD}}$: Power-down bit
I = After power-up or by the clrwdt instruction
$0=$ By execution of the SLEEP instruction
Z: Zero bit
$1=$ The result of an anthmetic or logic operation is zero
$0=$ The result of an anthmetic or logic operation is not zero
DC: Digit carry/borrow bit (ADDWE, ADDLW, SUBLW, SUBTF instructions) (for borrow, the polarity is reversed)
$1=$ A carry-out from the 4th low order bit of the result occurred
$0=$ No carry-out from the 4th low order bit of the result
C: Carrybortow bit (ADDWF, ADDLF, SUBLW, SuBFE instructions) (for borrow, the polarity is reversed)
I = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

| RW-1 | RNW-1 | RN-1 | RN-1 | RW-1 | RW-1 | RN-1 | RN-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PSO |
| bit 7 | | | | | | | |

RBPU: PORTB Pull-up Enable bit
$1=$ PORTB puil-ups are disabled
$0=$ PORTB puil-ups are enabled by individual port latch values
INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RBOINT pin
$0=$ internupt on falling edge of RBOINT pin
TOCS: TMRO Clock Source Select bit
$1=$ Transition on RA4/TOCKI pin
$0=$ Internal instruction cycle clock (CLKOUT)
TOSE TMRO Source Edge Select bit
$1=$ Increment on high-to-low transition on RA4/TOCKI pin
$0=$ Increment on low-to-high transition on RA4/TOCKl pin
PSA: Prescaler Assignment bit
$1=$ Prescaler is assigned to the WDT
$0=$ Prescaler is assigned to the Timero module
PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WOT Rate

000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 128$

INTCON RECISTER (ADORESS OBh, 8Eh)

RN-0	RW-0	RN-0	RW-0	RN-0	RW-0	RN-0	RN-x	
GHE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	
bit 7								

GIE: Global Interrupt Enable bit
2 = Enables all unmasked interrupts
0 = Disables all interrupts
EEIE: EE Wnte Complete Intemupt Enable bit
1 = Enables the EE Wnite Complete interrupts
$0=$ Disables the EEWrite Complete interupt
TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO intemupt
$0=$ Disables the TMRO interrupt
NTE: RBOINT Extemal Intermupt Enable bit
1 = Enables the RBO/INT extemal intemupt
$0=$ Disables the RBOIINT externel interrupt
RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port chenge interrupt
$0=$ Disables the RB port change intermpt
TOIF: TMR0 Overflow Interrupt Flag bit
$1=$ TMRO register has overflowed (must be cleared in sofware)
$0=$ TMR0 register did not overlow
INTF: RBOINT Extemal Interrupt Flag bit
$1=$ The RBD/NT extemal intertupt occured (must be cleared in software)
$0=$ The RBOINT extemal intemupt did not occur
RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state (must be cleared in sofware)
$0=$ None of the RB7:RB4 pins have changed state

16F84A and 16F877

Mnemonic． Operands		Description	Cycles	14－Bit Opcode				Status Affected	Nates	
		MSb				Lsb				
BYTE－ORIENTED FILE REGISTER OPERATIONS										
ADOWF	1，d		Add W and t	1	00	0111	atte	Etfe	C，DC， 2	1，2
ANDWF	f．d	ANO W with 1	1	00	0101	defr	ctif	z	1，2	
CLRF	1	Clear 1	1	00	0001	1ftr	ftrt	2	2	
CLRW	－	Clear W	1	00	0001	0xxx	xxxxx	z		
COMF	f，d	Complement 1	1	00	1001	affr	ifif	2	1，2	
DECF	f，d	Decrement f	1	00	0011	dete	Efter	Z	1，2	
DECFSZ	1．d	Decrement f，Skip ifo	1 （2）	00	1011	ditt	teft		1，2，3	
NCF	1．d	Increment 1	1	00	1010	dift	titi	z	1，2	
WCFFSZ	f，d	Increment t，Skdp it 0	1 （2）	00	1111	ditt	EEIf		1，2，3	
1ORWF	f，d	Incluslve OR W with 1	1	00	0100	dits	tiff	z	1，2	
MOVF	$f . \mathrm{d}$	Move 1	1	00	1000	detr	fitr	2	1,2	
MOVWF	1	Move W to 1	1	00	0000	17ft	fiff			
NOP	＊	No Operation	1	00	0000	0xxo	0000			
RLF	f．d	Rotate Left ttrough Carry	1	00	1101	aftr	Eftr	c	1，2	
RRF	f，d	Rotate Rught f through Carty	1	00	1100	arft	fitr	c	1，2	
SUBWF	f，d	Subtract W from ：	1	00	0010	diff	Etrt	C，DC， 2	1，2	
SWAPF	f，d	Swap nibbles in t	1	00	1110	atyr	rift		1，2	
XORWF	1，d	Exclusive OR W with ：	1	00	0110	ditr	tifi	z	1，2	
BIT－ORIENTED FILE REGISTER OPERATIONS										
BCF	f，b	8il Clear 1	1	01	00bb	brit	fiff		1.2	
BSF	f，b	Bit Self	1	01	01bb	bift	Iftr		1，2	
BTFSC	f，b	日品 Testi，Skip if Clear	1 （2）	01	10bb	beff	Ifft		3	
BTFSS	f，b	日it Test t，Skip if Sel	1 （2）	01	11bb	betr	Etre		3	
LITERAL AND CONTROL OPERATIONS										
ADDLW	k	Add Iteral and W	1	11	111x	kkkk	kkkk	c，0c， 2		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkdk	Z		
CAll	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	－	Clear Watcruog Timer	1	00	0000	0110	0200	TO，PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR Iteral with W	1	11	1000	kkkk	kkkk	z		
MOVW	k	Move literal to W	1	11	000x	kkkk	kkkk			
RETFIE	＊	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Retum with literat in w	2	12	01xex	kkkk	kkkk			
RETURN	－	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	－	Go into standby mode	1	00	0000	0110	0011	$\overline{\text { TO，PD }}$		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C，DC，Z		
XORLW	k	Exclusive OR titeral with W	1	11	1010	kjukk	kkkk	Z		

Note 1：When an VO register is modilied as a function of ilseff（e．g．yove pORTB，i），the value used will be that value present on the phs themselves．For example，if the data latch is＂1＂for a pin configured as input and is driven tow by an extemat device，the data wili be witten back with a＂
2：If this instruction is executed on the TMR0 register（and where applicable． $\mathrm{d}=1$ ），the prescaler wif be cteared if assigned to the Timero Module．
3：If Program Counter（PC）is modified or a conditional test is true，the instruction requires two cycles．The second cycle is executed as a NOP．

PIC 16F877

Pin Diagram

PDIP	

PIC $16 F 877$

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

RNW-0	RN-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D $/ \overline{\mathrm{A}}$	P	S	$\mathrm{R} \overline{\mathrm{N}}$	UA	BF
bit 7							

SMP: Sample bit

SPI Master mode:
1 = input data sampled at end of data output time
$0=$ input data sampled at middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in slave mode
$\ln 1^{2} C$ Master or Slave mode:
1 = Stew rate control disabled for standard speed mode (100 kHz and 1 MHz)
$0=$ Slew rate control enabled for high speed mode (400 kHz)
CKE: SPI Clock Edige Select (Figure 9-2, Figure 9-3 and Figure 9-4)
SPI mode:
For CKP $=0$
1 = Data transmitted on rising edge of SCK
$0=$ Data transmitted on falling edge of SCK
For CKP $=1$
1 = Data transmitted on falling edge of SCK
$0=$ Data transmitted on nising edge of SCK
In 1^{2} C Master or Slave mode:
1 = inpul levels conform to SMBus spec
$0=$ input levels contorm to $1^{2} \mathrm{C}$ specs
DIA: DatalAddress bit (${ }^{2} \mathrm{C}$ mode only)
1 = Indicates that the last byte received or transmitted was data
$0=$ Indicates that the last byte received or transmitted was address
P: STOP bit
($1^{2} \mathrm{C}$ mode only. This bill is cleared when the MSSP module is disabled, SSPEN is cleared.)
$1=$ Indicates that a STOP bit has been detected last (this bit is '0' on RESET)
$0=$ STOP bit was not detected last
s: START bit
($1^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a START bit has been detected last (this bit is ' 0 ' on RESET)
$0=$ START bit was not detected last
RW: Read/Write bit Information (${ }^{2} \mathrm{C}$ mode only)
This bit holds the RW bit information following the last address match. This bit is only valid from the address maich to the next START bit, STOP bit or not ACK bit.
$\ln \mathrm{j}^{2} \mathrm{C}$. Slave mode:
1 = Read
$0=$ Write
In $\mathrm{I}^{2} \mathrm{C}$ Master mode:
$1=$ Transmit is in progress
$0=$ Transmit is not in progress
Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.
UA: Update Address ($10-\mathrm{bit} \mathrm{P}^{2} \mathrm{C}$ mode only)
$1=$ indicates that the user needs to update the address in the SSPADO register
$0=$ Address does nol need to be updated
BF: Buffer Fuil Status bit
Receive (SPI and $1^{2} \mathrm{C}$ modes):
1 = Receive complete. SSPBUF is full
$0=$ Receive not complete, SSPBUF is empty
Transmit (12 C mode only):
1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full
$0=$ Data transmit complete (does not inciude the $\overline{A C K}$ and STOP bits). SSPBUF is empty

PIC 16F877

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

| RW-0 | RN-O | RW-0 | RNW-0 | RN-0 | RN-0 | RNW-0 | RN-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOL | SSPOV | SSPEN | GKP | SSPM3 | SSPM2 | SSPM1 | SSPMO |

WCOL: Write Collision Detect bit
Master mode:
1 = A write to SSPBUF was attempled while the 12 C conditions were not valid
$0=$ No collision
Slave mode:
$1=$ SSPBUF register is writen while still transmitting the previous word (must be cleared in software)
$0=$ No collision
SSPOV: Receive Overfiow Indicator bt

In SPI mode:

$1=$ A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overfiow. In Slaye mode, the user must read the SSPBUF, even If only transmitting data, to avoid overtiows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (Must be cleared in software.)
$0=$ No overtiow
In $1^{2} C$ mode:
$1=$ A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)
$0=$ No overtlow
SSPEN: Synctronous Seria Port Enable bit
In SPI mode.
When enabled, these pins must be properly conigured as input or output
1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
$0=$ Disables serial port and contigures these pins as I/O port pins
$\ln 1^{2} \mathrm{C}$ mode.
When enabled, these pins must be properly configured as input or output
$1=$ Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
$0=$ Disables serial port and contigures these pins as UO port pins
CKP: Clock Polarity Select of
In SPI mode:
1 = tole state for clock is a high tevel
$0=$ dile state for clock is a tow level
In 1^{2} C Stave mode:
SCK release control
1 = Enable clock
$0=$ Holds ciock low (clock stretct). (Used to ensure data setup time.)
In $1^{2} \mathrm{C}$ Master mode:
Unused in this mode
SSPM3:SSPMo: Synchronous Serial Port Mode Select bits
$0000=$ SPI Master mode, ciock $=$ Fosc $/ 4$
$0001=$ SPI Master mode, clock $=$ Foscl16
$0010=$ SPI Master mode, clock $=$ Fosc/64
$0011=$ SPI Master mode, clock $=$ TMR2 output/2
$0100=$ SPI Slave mode, dock $=$ SCK pin. SS pin control enabled
$0101=$ SPI Slave mode, dock $=$ SCK pin. $\overline{S S}$ pin controf disabled. $\overline{S S}$ can be used as $1 / 0$ pin.
$0110=1^{2} \mathrm{C}$ slave mode, 7 -bit address
$0111=1^{2}$ C Slave mode, 10 -bil address
$1000=1^{2} \mathrm{C}$ Master mode, clock = Fosc $/\left(4^{*}\right.$ (SSPADD +1$)$)
$1011=1^{2} \mathrm{C}$ Fimware Controlled Master mode (slave idle)
$1110=\mathrm{I}^{2} \mathrm{C}$ Firmware Controlled Master mode, 7 -bit address with START and STOP bit internupts enabled $1111=1^{2} \mathrm{C}$ Firmware Controlled Master mode, 10 -bit address with START and STOP bit interrupts enabled 1001, 1010, 1100, $1101=$ Reserved

PIC 16F877
PIC16F877/876 REGISTER FILE MAP

PIC 16F877

ADCONO REGISTER (ADDRESS: 1Fh)

RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	U-0	RW-0
ADCS1	ADCS0	CHS2	CHS1	CHSO	GOIDONE		ADON
bit 7							bit 0

ADCS1:ADCS0: AD Conversion Clock Select bits
$00=$ Fosc/2
$01=$ Fosc/8
$10=$ Fosc $/ 32$
11 = FRC (clock derived from the internal ADD module RC oscillator)
CHS2:CHSO: Analog Channel Select bits
$000=$ channel 0, (RAO/ANO)
001 = channel 1, (RA1/AN1)
$010=$ channel 2, (RAL/AN2)
011 = channel 3, (RA3/AN3)
$100=$ channel 4, (RA5/AN4)
$101=$ channel $5,(\text { REOUAN5 })^{[1]}$
$110=$ channel 6. (RE1/AN6) ${ }^{(1)}$
$111=$ channel 7, (RE2/AN7) ${ }^{(1)}$
GOIDONE: AD Conversion Status bit

If $A D O N=1$:

1 = AD conversion in progress (setting this bit starts the ADD conversion)
$0=$ A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)
Unimplemented: Read as ' 0 '
ADON: AD On bit
$I=A D$ converter module is operating
$0=A D$ converter module is shut-off and consumes no operating current

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	RWW-0	U-0	RW-0	RNW-0	RN-0	RN-0
ADFM	Wexmer	194x		PCFG3	PCFG2	PCFG1	PCFGO
bit 7 bit							

ADFM: A/D Result Format Select bit
1 = Right justified. 6 Most Significant bits of ADRESH are read as ' 0 '.
$0=$ Left justified. 6 Least Significant bits of ADRESL are read as ' 0 '.
Unimplemented: Read as ' 0 '
PCFG3:PCFG0: AD Port Configuration Control bits:

PCFG3: PCFGO	$\begin{aligned} & \text { ANY }{ }^{(1)} \\ & \text { RE2 } \end{aligned}$	ANE ${ }^{(4)}$ RE1	AN5 ${ }^{(4)}$ REO	AN4 RA5	AN3 RA3	AN2 RA2	ANI RA1	AnO RAO	Vref*	Vref-	Chanf Refs ${ }^{(2)}$
0000	A	A	A	A	A	A	A	A	Vod	Vss	810
0001	A	A	A	A	Vref:	A	A	A	RA3	Vss	711
0010	D	D	D	A	A	A	A	A	Vod	Vss	5/0
0011	0	D	D	A	Vref	A	A	A	RA3	Vss	$4 / 1$
0100	D	D	D	D	A	D	A	A	Vod	Vss	310
0101	D	D	0	D	VREFt	D	A	A	RA3	Vss	211
011 x	D	D	D	D	D	D	D	D	Vod	Vss	010
1000	A	A	A	A	Vref ${ }^{\text {a }}$	Vref.	A	A	RA3	RA2	612
1001	D	D	A	A	A	A	A	A	VDD	Vss	610
1010	D	D	A	A	Vref;	A	A	A	RA3	Vss	511
1011	0	D	A	A	VREF +	Vref-	A	A	RA3	RA2	$4 / 2$
1100	D	D	D	A	Vreft	Vref-	A	A	RA3	RA2	$3 / 2$
1101	D	D	D	D	Vref*	Vref.	A	A	RA3	RA2	$2 / 2$
1110	D	D	D	D	0	D	D	A	Vod	Vss	110
1111	D	D	D	D	VREF*	Vref-	0	A	RA3	RA2	112

$A=$ Analog input $\quad D=$ Digital $1 / O$

Note 1: These channels are not available on PIC16F873/876 devices.
2: This column indicates the number of analog channels available as AD inputs and the number of analog channels used as voltage reference inputs.

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-\mathbf{n}=$ Value at $P O R$	$' 1 '=$ Bit is set	$' 0$ Bit is cleared $\quad x=B i t$ is unknown

