UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION, SECOND SEMESTER JULY 2016

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: SOLID STATE ELECTRONICS COURSE CODE: EE429

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are FOUR questions in this paper. Answer all questions. Each question carries 25 marks.
2. If you think not enough data has been given in any question you may assume any reasonable values.
3. A list of useful Equations and constants is attached

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

(a) Determine the number of atoms per unit cell in a face centered cubic Lattice.
(b) The volume density of atoms for a face centered cubic lattice is $4 \times 10^{22} \mathrm{~cm}^{-3}$. Assume that the atoms are hard spheres with each atom touching its nearest neighbor. Determine the lattice constant and the radius of the atom.
(c) Given that the lattice constant of GaAs is 5.65 , determine the number of Ga atoms and As atoms per cm^{3}.
(d) According to classical physics, the average energy of an electron in an electron gas at thermal equilibrium is $\frac{5 \mathrm{kT}}{2}$. Determine, for $T=300 \mathrm{~K}$,
(i) the average electron energy in eV
(ii) average electron momentum
(iii) the de Broglie wavelength.
(e) An electron and a photon have the same energy. At what value of energy (in eV) will the wavelength of the photon be 100 times that of the electron?

OUESTION TWO (25 marks)

(a) Describe the lattice planes shown in the figure below:

(b) The Fermi energy level for a particular material at $\mathrm{T}=300 \mathrm{~K}$ is 4.25 eV . The electrons in this material follow the Fermi-Dirac distribution function.
(i) Find the probability of an energy level at 4.50 eV being occupied by an electron.
(ii) What is the percentage change in Fermi energy level corresponding to a 100% increase in temperature, assume E_{F} is constant?
(iii) Assume that the Fermi energy level is 0.28 eV above the valence band energy.

Determine the probability of a state being empty of an electron at E_{v}. What does the value obtained mean?
(c) Show that the probability of an energy state being occupied $\Delta \mathrm{E}$ above the Fermi energy is the same as the probability of a state being empty ΔE below the Femi level.

QUESTION THREE (25 marks)

(a) Consider a uniformly doped silicon pn junction with doping concentrations $N_{a}=5 \times 10^{17} \mathrm{~cm}^{-3}$ and $N_{d}=10^{17} \mathrm{~cm}^{-3}$.
(i) Calculate $V_{b i}$ at $\mathrm{T}=300 \mathrm{~K}$.

The junction has a cross-sectional area of $10^{-4} \mathrm{~cm}^{2}$ and has an applied reverse-bias voltage of $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$. Calculate
(ii) the depletion region width W .
(iii) $E_{\max }$
(iv) the total junction capacitance.
(b) A Schottky diode is formed by depositing Au on n-type GaAs doped at
$N_{d}=5 \times 10^{16} \mathrm{~cm}^{-3}, \mathrm{~T}=300 \mathrm{~K}$. Determine the forward-bias voltage required to obtain $J_{n}=5 \mathrm{~A} / \mathrm{cm}^{2}$. Assume $\emptyset_{B n}=0.867 \mathrm{~V}$.
(c) Consider an n-channel MOSFET with $\mathrm{W}=15 \mu \mathrm{~m}, \mathrm{~L}=2 \mu \mathrm{~m}$, and $C_{o x}=6.9 \times$ $10^{-8} \mathrm{~F} / \mathrm{cm}^{2}$. When the transistor is biased in the saturation region, the drain current is $I_{D(\text { sat })}=35 \mu \mathrm{~A}$ at $V_{G S}=1.5 \mathrm{~V}$ and $I_{D(\text { sat })}=75 \mu \mathrm{~A}$ at $V_{G S}=2.5 \mathrm{~V}$. Determine the electron mobility and the threshold voltage. Assume $V_{G S}=0.10 \mathrm{~V}$
(d) Consider a p-channel GaAs pn JFET at T 300 K . The parameters are $N_{d}=10^{18} \mathrm{~cm}^{-3}$ and $a=0.65 \mu \mathrm{~m}$. Determine the channel doping concentration such that the internal pinch-off voltage is $V_{P O}=2.75 \mathrm{~V}$.

QUESTION FOUR (25 marks)

(a) The experimentally measured junction capacitance of a one-sided silicon $n+p$ junction biased at $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ and at $\mathrm{T}=300 \mathrm{~K}$ is $\mathrm{C}=0.105 \mathrm{pF}$. The built-in potential barrier is found to be $\mathrm{V}_{\mathrm{bi}}=0.765 \mathrm{~V}$. The cross-sectional area is $\mathrm{A}=10^{-5} \mathrm{~cm}^{2}$. Find the doping concentrations.
(b) Consider a silicon pn junction at $\mathrm{T}=300 \mathrm{~K}$ with a p-type doping concentration of $N_{a}=2 \times 10^{17} \mathrm{~cm}^{-3}$.
(i) Determine the n-type doping concentration such that the maximum electric field is $E_{\text {max }}=2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$ at a reverse-biased voltage of $V_{R}=25 \mathrm{~V}$.
(ii) What is the junction capacitance given that $A=3 \times 10^{-3} \mathrm{~cm}^{2}$?
(iii) What is the difference between Avalanche breakdown and Zener breakdown in pn junctions?
(c) An $\mathrm{n}^{+} \mathrm{p}$ silicon diode at $\mathrm{T}=300 \mathrm{~K}$ has the following parameters: $N_{d}=10^{18} \mathrm{~cm}^{-3}, N_{a}=$ $10^{16} \mathrm{~cm}^{-3}, D_{n}=25 \mathrm{~cm}^{2} / \mathrm{s}, D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s} . \tau_{\mathrm{n} 0}=\tau_{\mathrm{p} 0}=1 \mu \mathrm{~s}$, and $A=10^{-4} \mathrm{~cm}^{2}$ Determine the diode current for a forward-bias voltage of 0.8 V
(d) Consider an n-type gallium arsenide semiconductor at T $=300 \mathrm{~K}$ doped at $N_{d}=5 \times$ $10^{16} \mathrm{~cm}^{-3}$.
(i) Determine $E_{F n}-E_{F}$ if the excess-carrier concentration is $0.01 N_{d}$
(ii) Determine $E_{F i}-E_{F p}$

USEFUL INFORMATION AND EQUATIONS

$$
\begin{aligned}
& J_{p}\left(x_{n}\right)=-\left.e D_{p} \frac{d\left(\delta p_{p}(x)\right)}{d x}\right|_{x \rightarrow s} \quad J_{p}\left(x_{n}\right)=\frac{e D_{p} p_{n p}}{L_{p}}\left[\exp \left(\frac{e V_{s}}{k T}\right)-1\right] \quad n_{a}=n_{i} \exp \left[\frac{E_{F}-E_{F}}{k T}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta n_{p}(x)=n_{p}(x)-n_{\infty}=n_{p o}\left[\exp \left(\frac{e V_{s}}{k T}\right)-1\right] \exp \left(\frac{x_{p}+x}{L_{s}}\right) \quad E_{F-}-E_{\text {midep }}=\frac{3}{4} k T \ln \left(\frac{m_{p}^{*}}{m_{n}^{*}}\right) \\
& \delta p_{n}(x)=p_{n}(x)-p_{m b}=p_{m}\left[\exp \left(\frac{e V_{a}}{k T}\right)-1\right] \exp \left(\frac{x_{s}-x}{L_{p}}\right) \quad \begin{array}{l}
\sigma \approx e \mu_{s} n=e \mu_{n}\left(N_{a}-N_{a}\right) \\
\sigma \approx e \mu_{p} p=e \mu_{p}\left(N_{a}-N_{d}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& W=\left\{\frac{2 \epsilon_{s}\left(V_{b i}+V_{R}\right)}{e}\left[\frac{N_{a}+N_{d}}{N_{a} N_{d}}\right]\right\}^{1 / 2} C^{s}=\left\{\frac{e \epsilon N_{N} N_{d}}{2\left(V_{k i}+V_{R}\right)\left(N_{a}+N_{d}\right.}\right]^{1 / 2} \quad J=J_{s r}\left[\exp \left(\frac{e V_{a}}{k T}\right)-1\right] \\
& x_{p}=\left\{\frac{2 \epsilon_{t} V_{b i}}{e}\left[\frac{N_{d}}{N_{a}}\right]\left[\begin{array}{c}
1 \\
N_{a}+N_{d}
\end{array}\right]\right]^{1 / 2} \quad \phi_{B_{n}}=\left(\phi_{m}-\chi\right) \\
& J_{A T}=A^{*} T^{2} \exp \left(\frac{-e \phi_{m_{n}}}{k T}\right) \\
& \text { Typical mobility values at } T=300 \mathrm{~K} \text { and low doping concentrations } \\
& I_{D}=\frac{W \mu_{n} C_{\mathrm{ax}}}{L}\left(V_{C S}-V_{T}\right) V_{D s} \\
& V_{p 0}=\frac{e a^{2} N_{q}}{2 \epsilon_{s}}
\end{aligned}
$$

Work functions of some elements

Elenent ${ }^{\text {a }}$	Work function, $\$_{\text {e }}$
Ag, silver	4.26
Al, aluminum	4.28
Au, gold	5.1
Cr, chremium	4.5
Mo, molybdenum	4.6
Ni, nickel	5.15
Pd, palladium	5.12
Pt. platinum	5.65
Ti, titanium	4.33
W, tungsten	4.55

Commonly accepted values of n_{i} at $T=300 \mathrm{~K}$

Silicon	$n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$
Gallinm arsenide	$n_{i}=1.8 \times 10^{8} \mathrm{~cm}^{-3}$
Germanitm	$n_{i}=2.4 \times 10^{05} \mathrm{~cm}^{-3}$

Electron affinity of some semiconductors

Ilenent	Dlectron aftinity,
Ge, germanium	4.13
Si, silicon	4.01
GaAs, gallum arsenide	4.07
AlAs, aluminum arsenide	3.5

PHYSICAL CONSTANTS

Physical constants

Avogadro's number	$N_{A}=6.02 \times 10^{+23}$ atoms per gram molecular weight
Boltzmann's constant	$\begin{aligned} k & =1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\ & =8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K} \end{aligned}$
Electronic charge (magnitude)	$e=1.60 \times 10^{-19} \mathrm{C}$
Free electron rest mass	$m_{0}=9.11 \times 10^{-31} \mathrm{~kg}$
Permeability of free space	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Permittivity of free space	$\begin{aligned} \epsilon_{0} & =8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \\ & =8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \end{aligned}$
Planck's constant	$\begin{aligned} h & =6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s} \\ & =4.135 \times 10^{-15} \mathrm{eV}-\mathrm{s} \end{aligned}$
	$\frac{h}{2 \pi}=\hbar=1.054 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Proton rest mass	$M=1.67 \times 10^{-27} \mathrm{~kg}$
Speed of light in vacuum	$c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
Thermal voltage ($T=300 \mathrm{~K}$)	$V_{i}=\frac{k T}{e}=0.0259 \mathrm{~V}$
	$k T=0.0259 \mathrm{eV}$

Silicon, gallium arsenide, and germanium properties ($T=300 \mathrm{~K}$)

Property	Si	GaAs	Ge
Atoms (cm^{-3})	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ${ }^{3}$)	2.33	5.32	5.33
Lattice constant (\AA)	5.43	5.65	5.65
Melting point (${ }^{(} \mathrm{C}$)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, $N_{c}\left(\mathrm{~cm}^{-3}\right)$	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, $N_{\mathrm{E}}\left(\mathrm{cm}^{-3}\right)$	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm^{-3})	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility ($\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$)			
Electron, μ_{R}	1350	8500	3900
Hole, μ_{p}	480	400	1900
Effective mass $\left(\frac{m^{*}}{m_{0}}\right)$			
Electrons	$m_{1}^{*}=0.98$	0.067	1.64
	$m_{t}^{*}=0.19$		0.082
Holes	$m_{\text {tri }}^{*}=0.16$	0.082	0.044
	$m_{h, ~}^{*}=0.49$	0.45	0.28
Density of states effective mass			
Electrons $\left(\frac{m_{d}^{*}}{m_{o}}\right)$	1.08	0.067	0.55
Holes $\left(\frac{m_{d \theta}^{*}}{m_{\theta}}\right)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\left(\frac{n_{c n}^{*}}{m_{\sigma}}\right)$	0.26	0.067	0.12
Holes $\left(\frac{m_{c}^{*}}{m_{s}}\right)$	0.37	0.34	0.21

