University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2015

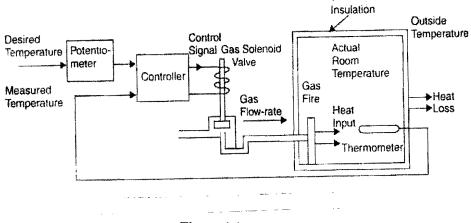
Title of Paper	: Control Engineering I
Course Number	: EE431
Time Allowed	: 3 hrs
Instructions	 Answer any four (4) questions Each question carries 25 marks Useful information is attached at the end of the question paper

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of nine (9) pages

Question 1

- (a) How do closed loop systems compensate for disturbances and state one of their drawbacks. [3]
- (b) Based on the natural response definition of stability, explain based on linear time invariant system as to when a system is said to be stable, unstable and marginally stable. [3]
- (c) The imaginary part of a pole generates what part of a response. Sketch their system response when the complex values $\operatorname{are} \pm j3$ and the input is a step function. [3]
- (d) The physical realization of a system to control room temperature is shown in Figure 1.1. Here the output signal from a temperature sensing device is compared with the desired temperature. Any difference or error causes the controller to send a control signal to the gas solenoid valve which produces a linear movement of the value stem, thus adjusting the flow of a gas to the burner of the gas fire. The desired temperature is usually obtained from manual adjustment of a potentiometer. Draw the block diagram of the room temperature control system. [7]



(e) Find the number of poles in the left half-plane, right half-plane, and at the $j\omega$ -axis for the system of Figure 1.2. Draw conclusions about the stability of the closed-loop system. [9]

$$\frac{R(s)}{s(s^{7}+3s^{6}+10s^{5}+24s^{4}+48s^{3}+96s^{2}+128s+192)} C(s)$$

Question 2

(a) Find the transfer function, T(s) = Y(s)/R(s), for the following system represented in state space. [10]

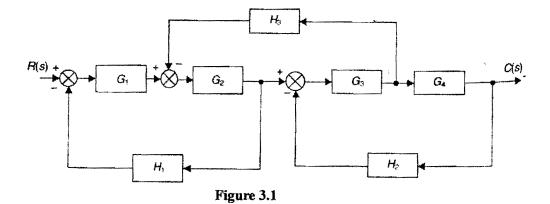
$$\dot{x} = \begin{bmatrix} 2 & 3 & -8 \\ 0 & 5 & 3 \\ -3 & -5 & -4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mathbf{r}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 3 & 6 \end{bmatrix} \mathbf{x}$$

(b) Represent the following transfer function in state space, also show the decomposed transfer function and the equivalent block diagram. Give your answer in vector-matrix form. [15]

$$T(s) = \frac{s^2 + 3s + 7}{(s+1)(s^2 + 5s + 4)}$$

Question 3

(a) Find the overall closed-loop transfer function of the system shown in figure 3.1 [6]



- (b) With reference to Figure 3.2
 - (i) Sketch the root locus for the system [4]
 - (ii) Find the frequency and gain, K, for which the root locus crosses the imaginary axis. For what range of K is the system stable? [15]

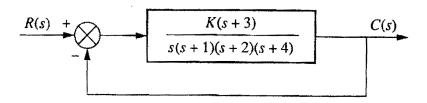


Figure 3.2

Question 4

(a) For the system shown in Figure 4.1, find the system type, the appropriate error constant associated with the system type, and the steady-state error for a unit step input. [5]

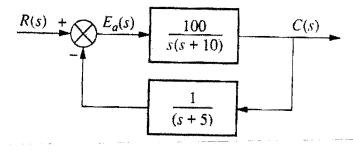


Figure 4.1

(b) Represent the system below in state space in phase variable and input feed-forward forms. Draw the signal-flow graphs. [8]

$$T(s) = \frac{s^3 + 2s^2 + 7s + 1}{s^4 + 3s^3 + 5s^2 + 6s + 4}$$

(c) Find the value of the proportional controller gain K_1 to make the controller system shown in Figure 4.2 just unstable. Also, find the roots of the characteristics equation and the transient response c(t). [12]

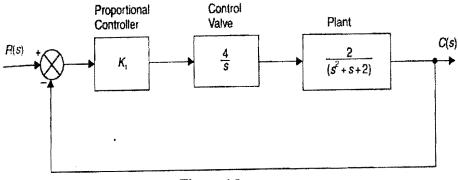


Figure 4.2

Question 5

(a) For the system in Figure 5.1, evaluate the static error constants and find the expected error for the standard step, ramp, and parabolic inputs. [5]

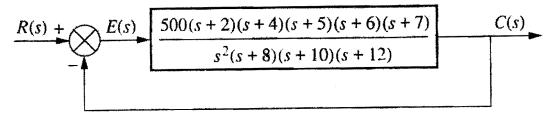
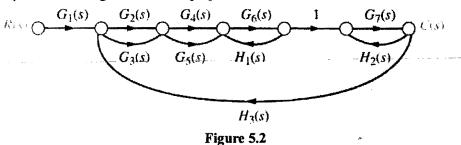


Figure 5.1

(b) Using Mason's rule, find the transfer function, T(s) = C(s)/R(s), for the system represented in Figure 5.2 below.[10]



- (c) A DC motor is connected to an op-amp circuit in cascade as shown in the figure 5.3 (a). The op-amp circuit subsystem is shown in figure 5.3 (b); the input to the op-amp is a voltage source $v_i(t)$, the output is the voltage $v_s(t)$, and the transfer function of this subsystem is $G_1(s)$. The DC motor subsystem is shown in figure 5.3 (c); the input to the DC motor is the op-amp's output $v_s(t)$, the output is the angular velocity $\omega(t)$ of a shaft connected to the motor, and the transfer function of this subsystem is $G_2(s)$. The DC motor subsystem is not loading the op-amp circuit subsystem.
 - (i) Derive the transfer function $G_1(s)$ of the op-amp circuit subsystem. Locate the poles and zeros of $G_1(s)$ on the s-plane. [5]
 - (ii) Derive the time-domain response $\omega(t)$ when the input $v_i(t)$ is a step function of amplitude 1V (i.e., the unit-step response.) Given that the transfer function of the DC motor subsystem $G_2(s) = \frac{1}{s+2}$. [5]

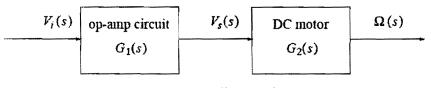
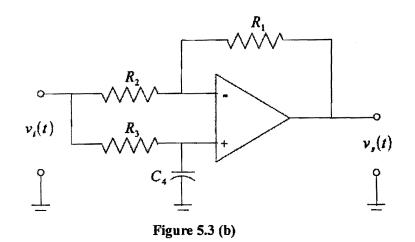


Figure 5.3 (a)



*

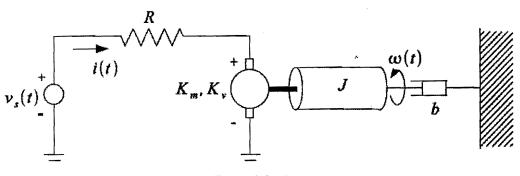


Figure 5.3 (c)

Component	Voltage-current	Current-voltage	Voltage-charge	impedance Z(s) = V(s) /I(s)	Admittance Y(s) = I(s)/V(s)
Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t)=\frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-////- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), L = H (hencies).

Table 2

۱

Component	Force- velocity	Force- displacement	Impedance $Z_{M}(s) = F(s) X(s)$	
Spring N(t) 0000 - h(t) K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = K x(t)	K	
	$f(t)=f_{\rm v}v(t)$	$f(t) = f_y \frac{dx(t)}{dt}$	$f_{v}s$	
$M \rightarrow (0, T)$ $M \rightarrow j(T)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms ²	

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), y(t) = m s (meters second), K = N m (newtons/meter), $f_1 = N$ -s/m (newton-seconds meter), M = kg (kilograms = newton-seconds² meter).

.

Table 3

	-	Type O		Туре 1		Туре 2	
input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, ht(t)	$\frac{1}{K_{r}}$	$K_v = 0$	œ	$K_v =$ Constant	$\frac{1}{K_{\nu}}$	$K_v = \infty$	0
Parabola, $-\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_q = 0$	ac :	$K_a = 0$		$K_a =$ Constant	$\frac{1}{K_a}$

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{step}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(x) = e_{\text{samp}}(x) = \frac{1}{\lim_{s \to 0} sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$c(\infty) = c_{\text{parabola}}(\infty) = \frac{1}{\lim_{x \to 0} s^2 G(s)}$$

Position constant, K_p , where

$$K_p = \lim_{x \to 0} G(x)$$

Velocity constant, K_v , where

 $K_i = \lim_{s \to 0} sG(s)$

Acceleration constant, K_a , where

 $K_0 = \lim_{s \to 0} s^2 G(s)$