UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE
 Department of Electrical and Electronic engineering

July 2016

SUPPLEMENTARY EXAMINATION

of the paper:
 Electromagnetic Fields II

Course Code: EE441
Time allowed: Three Hours

Instructions:

1. Answer all questions in the following pages.
2. The answer must be written in the space provided in the question book; those in elsewhere considered invalid. Use the answer book as a scratch pad. Both question and answer book must be handed-in and marked with name and ID.
3. This paper has 9 pages, including this page and a Smith Chart.

Q1: (20 pts) Given a rectangular loop, $0.4 \times 0.6 \mathrm{Mtr}$, shown in Fig. Q1-1, with a resistance of 0.5Ω, which rotates 6000 rpm in a uniform magnetic flux density, $\vec{B}=50 \vec{u}_{z} \mathrm{mT}$. (i)(5 pts). Find the emf induced in the loop as a function of time. The loop has 4 sides; which side is effecttively induced this emf if any? (ii) (5 pts). Find the direction of the current with respect to the coil position. (iii)(10 pts).

Fig. Q1-1 Which sides are induced no emf if any? Give the reason behind in a vector equation.

Q2: (20 pts) A plane wave in air with,
$\bar{E}^{i}=\vec{u}_{y} \cdot 20 e^{-j(3 x+4 z)}$
is incident upon the planar surface of a dielectric material, with $\varepsilon_{\mathrm{r}}=4$, occupying the half-space $z \geq 0$. Determine: (i). the polarization of the incident wave, (ii). the angle of incidence, (iii). the angle of the refraction, and (iv). prove this is a TEM wave. (5 pts each)

Q3: ($\mathbf{2 0} \mathbf{~ p t s) ~ I n ~ r e s p o n s e ~ t o ~ a ~ s t e p ~ v o l - t a g e ~} 8 \mathrm{~V}$, the voltage waveform shown in Fig. Q5-1 was observed at the load side of a lossless transmission line with $Z_{o}=50 \Omega$ and $u_{p}=0.8$ C. Determine: (i). the length of the line, (ii). Γ_{L} and Γ_{S}, (iii). R_{S}, and (iv). R_{L} (5 pts each)

Fig. Q5-1

Figure A. 6 A standard Smith hart

Q4: (20 pts) A lossless TV transmission line of 75Ω feeds a dipole antenna of impedance $70+\mathrm{j} 40 \Omega$. (i) $(5 \mathrm{pts})$. Find VSWR. To improve the VSWR design a $\lambda / 4$ transformer inserted in somewhere in the transmission from the load, (ii)(10 pts). Calculate the location from the load to put the $\lambda / 4$ transformer, (iii)(5 pts). the Z_{o} of the transformer.

Q5: (20 pts) For an antenna whose normalized radiation intensity is given by

$$
\begin{aligned}
& F(\theta, \varphi)=1, \ldots . . \text { for } 90 \leq \theta \leq 120, \ldots . .-90 \leq \varphi \leq+90 \\
& F(\theta, \varphi)=0, \ldots . . \text { elsewhere }
\end{aligned}
$$

Determine: (i). The direction of maximum radiation, (ii). Beam solid angle, (iii). Directivity, and (iv). Half-power beamwidth in x-z plane. (5 pts each)

