UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2016

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: Switchgear and Protection COURSE CODE: EE551 TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

ж.

- 1. There are four questions in this paper. Answer all questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question you may assume any reasonable values.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

Solve the following questions

a) Consider a radial feeder with two buses A and B where IDMT OC relays used. The load current at each bus and fault currents when having a fault at each bus are given below

Figure 1

Bus A	Bus B	Bus C
$I_{L,A} = 330 A$	$I_{L,B} = 240 \text{ A}$	$I_{L,C} = 160 \text{ A}$
$I_{FA, max} = 2000 A$	$I_{FB, max} = 3000 \text{ A}$	$I_{FC, max} = 240 A$

- i. Determine the CT ratios and the plug settings for the relays at bus A and bus B. Assume 25% overload when calculating the maximum load, 5 A relay rating is used and the plug settings to be done at 100%. Note: Assume the available CT ratings are: 100 A, 200 A, 300 A, 400 A, 500 A, 600 A ..., etc.
- ii. Determine the time dial setting for the relay at bus A. Assume the time dial setting for the relay at bus B is 0.1 sec ($T_{DS,B}$ =0.1 sec), each circuit breaker operating time is 0.2 sec (T_{CB} = 0.2 sec) and each relay overshoot time is calculated to be 10% of the summation of relay operating time and circuit breaker operating time of the previous coordinated relay T_{OS} = 0.1(T_{CB} + T_R)
 - b) What is the need of relay coordination?
 - c) A three phase Delta-Wye connected 50 MVA; 66/11kv transformer is protected by a differential relay. The ratios on the primary and secondary side are 200: 5 and 3000: 5 respectively as shown in the figure.

,

.

- (i) Calculate the relay current at normal load.
- (ii) The relay current at 125% of the rated current.

QUESTION TWO (25 marks)

Answer the following questions

a) Explain the principle of operation of the circuit breaker.

- b) Explain briefly how the arc is interrupted in the following types of breakers:
 - i. Vacuum circuit breaker
 - ii. Puffer type SF6 circuit breaker
 - iii. Minimum oil circuit breaker
- (c) Give the two methods of arc interruption and explain each
- (d) Define the following terms as used in protection relays
 - i) Pick up value
 - ii) Plug Setting Multiplier

(e) Draw the protective zones for the power system shown in figure below.

Figure 3

Which circuit breakers should open in the circuit in Figure 3 for a fault at :

- (i) P1
- (ii) P2
- (iii) P3
- (iv) Briefly explain the importance of overlapping protection zones

QUESTION THREE (25 marks)

Solve the following questions

(a) A 10MVA, 6.6 kV, 3-phase star connected alternator is protected by Merz-Price circulating current system. If the ratio of the current transformer is 1000/5, the minimum operating current for the relay is 0.75 A and the neutral point earthing resistance is 6 Ω as shown in the figure below.

Figure 4

Calculate:

- (i) The percentage of each stator windings that is unprotected against faults when the machine is operating at normal voltage.
- (ii) The minimum resistance to provide protection for 90% of the rotor winding.
- (iii) What are the main types of stator winding faults?
- (iv) Give the limitations of Merz Price protection.

2

(b) The following table gives the positive sequence line impedances as well as the CT and VT ratios of the distance relay at B12 for 66 kV (line to line) systems.

Line	Positive sequence impedance Ω	
1-2	7+j30	
2-3	17+j20	
2-4	15+j35	
1-3	5+j21	

Circuit Breaker	CT ratio	VT ratio
B12	1500:5	3000:1

- (i) Determine the three impedance relay zones settings Z_{r1} , Z_{r2} , Z_{r3} for the breaker B12,
- (ii) Maximum current for line 1-2 during emergency loading conditions is 150 A at a power factor 0.75 lagging. Verify that B12 does not trip during normal and emergency loadings.

QUESTION FOUR (25 marks)

- a) Define the following terms as used in Circuit breakers
 - (i) Re-striking voltage
 - (ii) Recovery voltage
 - (iii) RRRV
- b) A 50Hz, 3-phase alternator has the line voltage of 11 kV. The generator is connected to a circuit breaker; the inductive reactance up to the circuit breaker is 7.5 Ω /phase. The distributed capacitance up to the circuit breaker between phase and neutral is 0.01µF.
 - (i) Determine the peak re-striking voltage across the contacts of circuit breaker.
 - (ii) Frequency of re-striking voltage transients
 - (iii) Maximum RRRV
 - (iv) Average rate of re-striking voltage up to peak re-striking voltage.
- c) Discuss the Buchholz relay with reference to:
 - (i) Principle of operation
 - (ii) The limitations