UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

MAIN EXAMINATION DECEMBER 2015

TITLE OF PAPER:	POWER SYSTEM ANALYSIS AND OPERATIONS
COURSE CODE:	EE552
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1. Answer any five (5) questions
2. Each question carries 20 marks
3. Marks for different sections are shown in then right hand margin

This paper has 4 pages including this page

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1[20]

(a) State 4 conditions for successful operation of a power system under normal balanced three-phase steady-state conditions
(a) For the two bus power system shown in Fig. Q. 1(b), use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and $S_{\text {Base }}=100 \mathrm{MVA}$
[16]

Fig. Q. 1(b).

OUESTION $2[20]$

(a) The single -line diagram for a simple three-phase power system is shown in Fig. Q. 2 (a). A bolted fault occurs at bus 3 (B3), with a pre fault voltage of 272 kV

Fig. Q. 2(a).
(i) Calculate the Thevenin impedance at the fault point. Use a base of 120 MVA [17]
(ii) Determine the sub- transient $L-L-L$ fault current in $p . u$ and in kA [3]

QUESTION 3 [20]

(a) State and explain any 3 main parameters of a transmission line
[6]
(b) A transmission line delivers a load of 50 MVA at 110 kV and p.f. $0 \cdot 8$ lagging. If the ABCD constants of the line are: $\mathrm{A}=\mathrm{D}=0.98 \angle 3^{\circ} ; \mathrm{B}=110 \angle 75^{\circ} \Omega$; $\mathrm{C}=0.0005 \angle 80^{\circ}$ S. Determine:
(i) Sending end voltage [6]
(ii) Sending end current [4]
(iii) Sending end power [2]
(iv) Efficiency of transmission. [2]

QUESTION 4 [20]

(a) Define fault and state at least two common causes of fault
(b) State 2 methods of computing fault current
(c) Differentiate between balanced and unbalanced faults
(d) Define symmetrical components and briefly explain how symmetrical components is used to analyze unbalanced systems
(e) Compute the sequence components of the following balanced line - to- neutral currents with $a b c$ sequence

$$
\left[\begin{array}{l}
I_{A N} \\
I_{B N} \\
I_{C N}
\end{array}\right]=\left[\begin{array}{l}
150 \angle 45^{\circ} \\
250 \angle 150^{\circ} \\
100 \angle 300^{\circ}
\end{array}\right] \mathrm{Amps}
$$

QUESTION 5 [20]

(a) Using two port network approach, derive the expressions for ABCD constants of a medium transmission line modeled using nominal $\boldsymbol{\pi}$ representation
(b) Which of the following will increase the resistance of a transmission line? Briefly explain (i) Increasing line temperature
(ii) Moving from a 60 Hz ac system to a 50 Hz ac system
(c) From hydroelectric power plant, 900 MW are to be transmitted to a load center located 500 km from the plant. Based on practical line loadability criteria, determine the number
of 3 - phase 60 Hz lines required to transmit this power with one line out of service for the following cases
(i) 345 kV lines with $Z_{C}=295 \Omega$
(ii) 500 kV lines with $Z_{C}=277 \Omega$
(iii) 765 kV lines with $Z_{C}=266 \Omega$

Assume $V_{S}=1.0$ per unit $V_{R}=0.95$ per unit and $\delta=35^{\circ}$. Also assume that the lines are uncompensated.

QUESTION $6[20]$

(a) Discuss a basic procedure used in solving a power flow problem using Gauss-Siedel iterative method
(b) In a 2-bus power system shown in Fig Q. 6(b), a generator attached to bus 1 and loads attached to bus 2 . The series impedance of a single transmission line connecting them is $(0.1+\mathrm{j} 0.5)$ per unit. The shunt admittance of the line may be neglected. Assume that bus 1 is the slack bus and that it has a voltage $V_{1}=1.0 \angle 0^{\circ}$ per unit. Real and reactive powers supplied to the loads from the system at bus 2 are $P_{2}=0.3$ per unit, $Q_{2}=0.2$ per unit (powers supplied to the system at each busses is negative of the above values). Determine voltages at each bus for the specified load conditions. Use the Gauss-Siedel iterative method

Fig. Q. 6(b)

