University of Swaziland
 Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Main Examination 2017

Title of paper: Analogue Design II

Course Number: EE323

Time allowed: $\mathbf{3}$ hours

Instructions:

1. Answer any FOUR (4) questions
2. Each question carries 25 marks
3. Marks for each question are shown at the right hand margin

This paper contains 6 pages including this one.

This paper should not be opened until permission has been granted by the invigilator.

Question 1

a) Consider the inverting integrator circuit of an operational amplifier;
i) Draw and label the circuit diagram
ii) Derive the expression for the time varying voltage across the capacitor. [4]
iii) Derive the expression for the output voltage
[2]
b) Find the output produced by a Miller integrator in response to an input pulse of 1 V height and $1-\mathrm{ms}$ with for $R=10 \mathrm{k} \Omega, C=1 n F$. Draw the input and the resultant output waveform.
c) For the op-amp differentiator circuit, derive the expression of the following
i) The current
ii) The output voltage
d) give the effects of feedback on amplifier characteristics, use increase and decrease to fill in the table below

Characteristic	Type of feedback			
	Current-Series	Voltage -series	Voltage-shunt	Current -shunt
Gain				
Input Resistance				
Output Resistance				

Question 2

a) Describe how to find the current i_{D} of a MOSFET in terms of the charge Q per unit length and the electron drift velocity. Assume a small $v_{D S}$ is applied to the transistor. [8]
b) For a $0.08 \mu \mathrm{~m}$ process technology for which $t_{o x}=15 \mathrm{~nm}$ and $\mu_{n}=550 \mathrm{~cm}^{2} / V . s$. Given that the transistor is operating in saturation with $I_{D}=0.2 m A$ with $\frac{W}{L}=20$, Find
i) $C_{o x}$
ii) $\quad k_{n}^{\prime}$
iii) $V_{o v}$
c) Consider the circuit Figure 2 below:

Figure 2
The transistor is specified to have $V_{t}=0.4 V, k_{n}^{\prime}=0.4 m A / V^{2} \frac{W}{L}=10, \lambda=0, V_{D D}=$ $1.8 \mathrm{~V}, R_{D}=17.5 \mathrm{k} \Omega$ and $V_{G S}=0.6 \mathrm{~V}$. For $v_{g s}=0\left(v_{d s}=0\right)$, find
i) $V_{O V}$
ii) $\quad I_{D}$
iii) $V_{D S}$
iv) A_{v}

Question 3

a) State four properties of feedback
b) State the four feedback topologies
c) Consider the circuit Figure 3 a) below

Figure 3 a)
i) Draw the A circuit
ii) Draw the β circuit
iii) Find
a) The gain $A_{f}=\frac{V_{0}}{V_{s}}$
b) The output resistance $R_{\text {out }}$
d) Figure 3b) shows an op amp circuit with voltage series through R_{1} and R_{2}. The open loop gain of the op -amp is $A=10^{4}$ and input impedance is $100 \mathrm{k} \Omega$. Find the gain and input impedance of the amplifier with feedback

Figure 3 b)

Question 4

a) Consider the circuit below Figure 4 a), $V_{C C}=10 \mathrm{~V}, I=100 \mathrm{~mA}, R_{L}=100 \Omega$ and the output voltage is 8 V -peak sinusoid. Find
i) The power delivered to the load
ii) The average power drawn from the supplies
iii) The power conversion efficiency

Figure 4 a)
b) For the class B output stage amplifier show that the power conversion efficiency η is approximately 78%
c) For the circuit below Figure 4 b), find
i) The open loop gain $A_{v}=\frac{V_{o}}{V_{i}}$
ii) The feedback factor β
iii) The overall gain $A_{f}=\frac{V_{o}}{V_{s}}$

Figure 4 b)

Question 5

a) Consider the Common-source amplifier circuit, Figure 5 below.

Find
i) The input resistance $R_{\text {in }}$
ii) The voltage gain G_{V}
iii) The output resistance $R_{\text {out }}$

Figure 5
b) Design a Wien-bridge oscillator using op-amp to generate a sinusoidal waveform of frequency 1 KHz .
c) List three advantages of a crystal Oscillator
d) A crystal has these values: $L=3 H, C_{s}=0.05 p F, R=2 k \Omega$, and $C_{p}=10 p F$. Calculate the f_{s} and f_{p} of the crystal.

