UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE
 Department of Electronic and Electrical Engineering

July 2017 SUPPLEMENTARY EXAMINATION

Title of the Paper:
Electromagnetic Fields I
Course Code: Ce341
Time Allowed: Three Hours.

Instructions:

1. Answer all questions, no choice.
2. The raswer must be written in the space provided in the question book. Use the answer book as a scratch pad.
Consider valid the only answer under the assigned the space.
3. This paper has 6 pages, including this page.

DO NOT OPEN THE PAPER
UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Q1 20 pts: Given a scalar function $f(x, y, z)=x^{2} \cdot y+z$, find (i) $\int f \cdot d \vec{l}$ and
(ii) $\int f \cdot d l$ along straight lines from $(0,0,2)$ to $(1,0,2)$ then to $(1,1,2)$.

Q3, 20 pts: Given a field patterns shown in Fig. Q3-1, by inspecttion determine and mark 2 small areas which has curl $\neq 0$ or div $\neq 0$ or both $\neq 0$ of the pattern. Then analytically calculate the non-zero curl or divergence to prove. Take closed surface anywhere in the pat- tern but must be specified. The fields are in xy-plane only, no contribution in z - axis top and bottom. The closed surface may be cubically or circinately bounded.

Q4, 20 pts: A long parallel plate cable has a width w and a separation d with insulation material ε / μ_{0}. Consider no end fringing effects. The cable is energized by a potential 100 V and terminated with a resistor 100 Ohm. (i). Find the electric and magnetic field intensity in the cable per meter. (ii). Graph the fields' directions in the cable

Q5, 20 pts: (i) A space divided into two parts, one part is in the air and the other in a solid with material $\varepsilon_{s} / \mu_{0}$. The boundary plane is through the Cartesian origin and its unit normal vector is ($0.8,0.6$). If an E -field, (4.3) is coming from the air through the boundary into the solid. Find the E-field in the solid. (ii) Construct the dual question in the magnetic field and answer likewise.

