UNIVERSITY OF SWAZILAND

 MAIN EXAMINATION, SECOND SEMESTER MAY 2017
FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

```
TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS
COURSE CODE: EE423
```

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries $\mathbf{2 5}$ marks.
2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

(a) (i) State the memory areas available and their usage in PIC16F84A.
(ii) Identify the architecture used in PIC microcontrollers and state why this architecture is more faster.
(iii) How do you describe a microprocessor based system and a microcontroller based system?
(iv) Indicate the peripheral modules available in PIC 16F84A and PIC 16F877.
(b) Consider the segment of a program shown in Figure-Q1 written for PIC16F84A.

bsf	03,5
moviw	$b^{\prime} 01000110^{\prime}$
movwf	06
movwf	01
bcf	03,5

Figure-Q1
(i) Explain all the statements shown in Figure-Q1.
(ii) Write the first three code lines in Figure-Q1 with machine code.
(3 marks)
(iii) In an application it is required to use timer TMR0 overflow occurring in every 5 ms . Select giving justification a crystal from the following list, for the clock oscillator that will give a minimum timing error. What is the percentage error in timing? Modify the code in Figure-Q1 only to accommodate your selection.

The crystals available are,
$1 \mathrm{MHz}, \quad 2.457 \mathrm{MHz}, \quad 3.579 \mathrm{MHz} \quad 4 \mathrm{MHz}$.

QUESTION TWO (25 marks)

A simple farm irrigation system is designed based on a 16F84A microcontroller. The system consists with a soil moisture sensing unit, rain sensor, water tank with a level sensing unit, water pump to fill the tank and a water sprinkler system. Following is a list of TTL compatible signals to be handled.

Signal
$M \quad$ Soil moisture sensing unit output. Returns logic ' 1 ' if the moisture is lower than the set limit.
$R \quad$ Rain sensor output. Returns logic ' 1 ' if the rain is present.
W Output of the water level sensor unit of the water tank with incorporated hysteresis. Returns logic ' 1 ' if the water level is lower than the set limit.
$P \quad$ Control signal of the water pump which fills the tank. Logic ' 1 ' activates the pump.
S

Description

Control signal for the water sprinkler system. Logic ' 1 ' activates it.
(i) Draw a circuit diagram for this system showing all signal interconnections with the pin numbers of the microcontroller. You may omit the components required for the clock oscillator. Sensors and the controlled components can be shown as blocks.
(ii) Suggest the control logic that you are going to implement by the microcontroller program.
(iii) Draw a flowchart for the microcontroller program based on (ii) above.
(iv) Using assembly instructions show how you are going to configure the ports as required.

QUESTION THREE (25 marks)

A block of assembly code program written for 16F84A is shown in Figure-Q3. For the clock oscillator, a 8 MHz crystal is used and the supply is +5 V . Assume that the variables P, M and N have been already defined with other special function registers.

(i) From what memory location the actual code is written in the program memory of the Microcontroller?
(ii) Identify the port pin to which the output of the program is assigned.
(iii) Find and copy the subroutine part of the code and evaluate as accurate as possible the time taken to execute it.
(iv) Build a complete flow chart to describe the function of the program.
(v) Draw the resulting output waveform for a period of 5 ms after the execution of the program from 'begin' statement. You need to mark the voltage and time information supported with calculations where necessary.

QUESTION FOUR (25 marks)

(a) State the sources that can make an interrupt on a 16F84A microcontroller.
(b) A 16 F 84 A is considered for the following.
(i) 'Task one' and 'Task two' are two different assembly code blocks. On low to high transition of an interrupt signal from an external device, 'Task one' needs to be executed. When the interrupt signal moves from high to low, 'Task two' needs to be executed. Select a port pin for the connection of interrupt signal. Show the configurations of the registers involved. Assume that no other types of interrupts are used.
(5 marks)
(ii) Show the contents of the registers which are effected after an interrupt mentioned in (b)(i) above.
(3 marks)
(iii) Draw a flow chart with enough details to show the servicing of interrupts mentioned in (b)(i) above.

> (7 marks)
(c) A PIC 16F877 microcontroller is considered for the following.
(i) When using its Analog to Digital Converter (ADC), it is required to configure it to have external voltage reference, four analog inputs, a clock source of $\frac{f O S C}{2}$. If the input channel 1 is selected and ADC turned on but not started converting, show the settings of the relevant registers. When the conversion is started and running, what are the changes in these registers? State your assumptions if there are any.
(4 marks)
(ii) If an 8 MHz crystal oscillator is to be used, select a suitable option for ADCS1 and ADCS0 bits in the ADCON0 register justifying the answer.

QUESTION FIVE (25 marks)

(a) A 16F877 is required to be connected to another device equipped with an USART interface. Communication is done full duplex and asynchronous with a baud rate of 9600 Hz . A 8 MHz crystal oscillator is used and 8 bit data transfer is assumed.
(i) Show how the 16F877 can be connected to the device USART interface. Any known pin numbers and pin names related to USART must be clearly marked.
(ii) Write the bit configuration of the registers TXSTA, SPBRG and RCSTA assuming
high speed option.

TXSTA:	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D

RCSTA:	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RXPD

You may use, $B R=\frac{F_{\text {ose }}}{16(X+1)}$ with usual notation.
(iii) State when and where new data to be transmitted must be loaded and new data received can be recovered.
(b) A device that can transfer data at a maximum rate of 125 kHz through SPI needs to be interfaced with a 16 F 877 . Assume that the microcontroller is running on a 8 MHz crystal oscillator.
If the microcontroller is configured for SPI mode to connect with the device, show the settings of the SSPCON, SSPSTAT and any other register involved.
It must include the settings for the zero idle state of clock, data sampling at the middle of the bit period and the data transfers are on the rising edge of clock.

PIC 16F84A

STATUS REGISTER (ADDRESS 03h, 83h)
RNW-0

RN-0	RN-0	R-1	R-1	RW-x	RN-x	RN-x	
IRP	RP1	RP0	$\overline{\text { TO }}$	$\overline{\text { PD }}$	Z	DC	C
bit 7							

Unimplemented: Maintain as ' 0 '
RPO: Register Bank Select bits (used for direct addressing)
01 = Bank 1 (80 h - FFh)
$00=$ Bank $0(00 h-7 F h)$
TO: Time-out bit
$1=$ After power-up, CLRWDT instruction, or SLEEP instruction
$0=A$ WDT time-out occurred
$\overline{\mathbf{P D}}$: Power-down bit
$1=$ After power-up or by the CLRWDT instruction
$0=$ By execution of the SLEEP instruction

Z: Zero bit

$\mathbf{1}=$ The result of an anithmetic or logic operation is zero
$0=$ The result of an anithmetic or logic operation is not zero
DC: Digit carry/bortow bit (ADDWF, ADDLW, SUBLW, SUBNF instructions) (for $\overline{\text { borrow, the polarity }}$ is reversed)
$1=$ A carry-out from the 4th low order bit of the result occurred
$0=$ No carry-out from the 4th low order bit of the result
C: Carryforrow bit (ADDWF, ADDLW, SUBLW, SUBFF instructions) (for borrow, the polarity is reversed)
$1=$ A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRE, RLE) instructions, this bit is loaded with either the high or low order bit of the source register.

PIC 16F84A

OPTION REGISTER (ADDRESS 84h)

RNW-1	RN-1						
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							

$\overline{\text { RBPU: PORTB Pull-up Enabie bit }}$
$1=$ PORTB pull-ups are disabled
$0=$ PORTB pullups are enabled by individual port latch values
INTEDG: Interrupt Edge Select bit
$1=$ Interrupt on rising edge of RBOINT pin
$0=$ Interrupt on lalling edge of RBOINT pin
TOCS: TMRD Clock Source Select bit
$1=$ Transition on RA4/TOCKI pin
$0=$ Internal instruction cycle clock (CLKOUT)
TOSE: TMRO Source Edge Select bit
$1=$ Increment on high-to-low transition on RA4/TOCKI pin
$0=$ Increment on low-to-high transition on RA4/TOCKI pin
PSA: Prescaler Assignment bit
$1=$ Prescaler is assigned to the WDT
$0=$ Prescaler is assigned to the Timer0 modula
PSZ:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 128$

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

RW-0	RW-0	RNW-0	RN-0	RN-0	RW-0	R/W-0	R/W-x
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
7 \% bit							

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
$0=$ Disables all interrupts
EEIE: EE Write Complete Interrupt Enable bit
1 = Enables the EE Write Complete interrupts
$0=$ Disables the EE Write Complete interrupt
ToIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMR0 interrupt
$0=$ Disables the TMRO internupt
NTE: RBOANT Extemal Intermupt Enable bit
1 = Enables the RB0/NT extemal interrupt
$0=$ Disables the RBO/INT extemal interrupt
RBIE: RB Port Change Interrupt Enable bit
$1=$ Enables the RB port change interrupt
$0=$ Disables the RB port change interrupt
TOIF: TMRO Overflow Interrupt Flag bit
$1=$ TMR0 register has overtiowed (must be cleared in software)
$0=$ TMRO register did not overflow
INTF: RBOINT Extemal Interrupt Flag bit
$1=$ The RBOINT extemal interrupt occured (must be cleared in software)
$0=$ The RBO/INT extemal interrupt did not occur
RBIF: RB Port Change Interrupt Flag bit
1 = At least one ol the RB7:RB4 pins changed state (musi be cleared in software)
$0=$ None of the RB7:RB4 pins have changed state

16F84A and 16F877

Mnemonic， Operands		Description	Cycies	14－8il Opeod．				status Affectad	Notes	
		Msb				Lsb				
EYTE－ORIENTED FLE RECISTER OPERATIONS										
ADOWF	1，d		Add W andif	1	00	0111	diff	feft	C，OC，Z	1，2
ANDWF	f．d	AND W winf	1	00	0201	dift	tifir	z	1,2	
CLRF	1	clear 1	1	00	0001	1751	frif	Z	2	
CLRW	－	Clear W	1	00	0001	0xcra	xoxax	Z		
COMF	1，d	Complement I	1	00	1001	drif	retr	2	1.2	
DECF	I， 6	Decrement f	1	00	0011	drff	fiff	z	1，2	
DECFSZ	f， 6	Decrement f，Skip il 0	1 （2）	00	1011	drif	fiff		1，2，3	
HCF	f，${ }^{\text {d }}$	Increment f	1	00	1010	drit	etrr	z	1，2	
INCFSZ	f，${ }^{\text {d }}$	Increment f，Skip if 0	1 （2）	00	1111	dfff	Effit		1，2，3	
lorwF	f，${ }^{\text {d }}$	Inctusive OR W whin If	1	00	0100	arti	ffte	z	1.2	
MOVF	f，${ }^{\text {d }}$	Move I	1	00	1000	diff	fific	z	1，2	
MOVWF	1	Move W to I	1	00	0000	1EtE	fiff			
NOP	－	No Operation	1	00	0000	0xa 0	0000			
RLF	f，${ }^{\text {d }}$	Rotale Lefl f through Carry	1	00	1101	drfi	IfIf	c	1，2	
RRF	f，${ }^{\text {d }}$	Rotate Right f tmrough Cary	1	00	1100	artr	frif	c	1.2	
SUBWF	f，${ }^{\text {d }}$	Stotract W from f	1	00	0010	diff	EIEI	c．0c． 2	1.2	
SWAPF	f，${ }^{\text {d }}$	Swap nibbles in f	1	00	1110	ditr	Etif		1.2	
XORWF	f，d	Exctusive OR W with f	1	00	0210	dift	1252	z	1.2	
EIT－ORIENTED FILE REGISTER OPERATIONS										
BCF	f．D	Bit chearf	1	01	0006	betf	Effi		1.2	
BSF	f．D	Bit Sel 1	1	01	018b	beter	Eftit		1.2	
BTFSC	f，${ }_{\text {d }}$	Bn Test f，Skip if Clear	1 （2）	01	1005	betr	1FIt		3	
BTFSS	f，b	B4 Testi，Stp if Set	1 （2）	01	115b	betit	12It		3	
LTERAL AND CONTROL OPERATIONS										
ADOLW	k	Add titeral and W	1	11	111x	kKkK	kkkk	c，DC， 2		
ANDLW	k	AND 部eral win W	1	11	1001	kidik	kkikk	2		
CALL	k	Call subroutine	2	10	0kKk	kukuk	kxkk			
CLEWOT	－	Clear Watchdog Timer		00	0000	0110	0100	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
coto	k	Go to address	2	10	12kik	kiklk	kkkck			
IORLW	k	Inclusive OR 隹eral win W	1	11	1000	kckik	kkikk	z		
MOVLW	k	Move lteral to W	1	11	00xx	kldik	krkkk			
RETFIE	－	Return from Interupt	2	00	0000	0000	1001			
RETLW	k	Return whth Iterai in W	2	11	0180x	kikk	krikk			
RETURN	＊	Return from Subroutine	2	00	0000	0000	1000			
Sleep	－	Co into stanuby mode	1	00	0000	0110	0011	$\overline{\mathrm{TO}} \overline{\mathrm{PD}}$		
SUBLW	k	Subtract W from literal	1	11	1100	kikik	xakk	c，0c， 2		
XORLW	k	Exclustve OR 位eral win W	1	11	1010	kikikl	kkkk	z		

Note 1：When an vo regtster is modilied as a function of itself（e．g．，Move roris，1），the value used will be that value present on the pins themselves．For example，II the data latch is＇1＇tor a pin configured as mpul and is driven low by an extemal device，the data win be wfiten back wth a＇${ }^{2}$ ．
2：If this instruction is executed on the TMF0 register（and，where appicable， $\mathrm{d}=1$ ），the prescaler with be cleared if assigned to the Timer0 Module．
3：If Program Counter（ PC ）is modified or a conofilional test is true，the instruction requres two cycles．The second cycle is executed as a sop．

Pin Diagram

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

RN-0	RW-O	R-0	R-0	R-0	$R-0$	$R-0$	$R-0$
SMP	CKE	D / \bar{A}	P	\mathbf{S}	$R \bar{W}$	UA	BF

SMP: Sample bit
SPI Master mode:
I = input data sampled at end of data output tirme
$0=$ Input data sampled at midde of data cutput time
SPI Slave mode:
SMP must be cleared when SPI is used in slave mode
In $1^{2} C$ Master or Stave mode:
$1=$ Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
$0=$ Stew rate control enabled for high speed mode (400 kHz)
CKE: SPI Clock Edge Select (Figure 9-2. Figure 9-3 and Figure 9-4)
SP1 mode:
For CKP = 0
1 = Data transmitted on rising edge of SCK
$0=$ Data transmitted on falling edge of SCK
For CKP $=1$
1 = Data transmitted on falling edge of SCK
$0=$ Data transmitted on rising edge of SCK
In 1^{2} C Master or Siave mode:
1 = inpul tevets conform to SMBur spec
$0=$ input levets conform to $\mathrm{I}^{2} \mathrm{C}$ specs
DIA: Data/Address bit (${ }^{2} \mathrm{C}$ mode onty)
$1=$ indicates that the last byte received or transmilted was data
$0=$ indicates that the last byte received or transmitted was address
P: STOP bit
(${ }^{2}$ C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
$1=$ indicates that a STOP bit has been detected last (this bitis $\mathbf{0} 0$ ' on RESET)
$0=$ STOP bit was not detected last
s: START bit
(${ }^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = indicates that a START bit has been detected last (this bit is $\mathbf{0}$ on RESET)
$0=$ START bl was not detected last
RUW: ReadWrite bit information (${ }^{2} \mathrm{C}$ mode ondy)
This bit holds the RNW bit information following the last address malch. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit
In $1^{2} C$ Slave mode:
$1=$ Read
$0=$ Write
$\ln 1^{2} \mathrm{C}$ Master mode:
$1=$ Transmit is in progress
$0=$ Transmit is not in progress
Logical OR of this bif with SEN, RSEN, PEN, RCEN, or ACKEN will indicate it the MSSP is in IDLE mode.
UA: Update Address (10-bit ${ }^{2} \mathrm{C}$ mode only)
1 = Indicates that the user needs to update the address in the SSPADD register
$0=$ Address does nof need to be updated
BF: Buffer Full Status bit
Receive (SPI and ${ }^{2} \mathrm{C}$ modes):
$1=$ Receive complete, SSPBUF is full
$0=$ Receive not complete, SSPBUF is empty
Iransmil (${ }^{2} \mathrm{C}$ mode onlv:
1 = Data transmit in progress (does not include the ACK and STOP bits). SSPBUF is full
$0=$ Data transmit complete (does not include the ACK and STOP bits). SSPBUF is empty

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

| RNW-O | RN-0 | RN-0 | RN-0 | RN-0 | RN-0 | RN-0 | RNN-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPMO |

bil 7

bit 0

WCOL: Write Collision Detect bit

Master mode:

1 = A write to SSPEUF was attempled while the I2C condations were not valid
$0=$ No collision
Shave mode:
$1=$ SSPBUF register is writen while still transmiting the previous word (must be cleared in sotware)
$0=$ No colision
ssPOV: Recelve Overtiow Indicator bit
in SPI mode:
1 = A new byte is received whie SSPBUF hodds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overtiows. In Master mode, the overliow bit is not set, since each operation is iniliated by writing to the SSPBUF register. (Must be cleared in sotware.)
$0=$ No overthow
$n l^{2} C$ mode:
1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit. mode. (Must be cleared in soltware.)
$0=$ No overthow
SSPEN: Synchronous Serial Port Enable bit

In SPI mode.

When enabled, these pins must be property configured as input or output
1 = Enables serial port and contigures SCK, SDO, SDI, and SS as the source of the serial port pins
$0=$ Disabies serial port and connigures these pins as 10 port pins
组 $P^{2} \mathrm{C}$ mode.
When enabied, these pins must be property configured as input or output
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
$0=$ Disables serial port and configures these pins as VO port pins
CKP: Clock Potarity Select bit
In SPI mode:
1 = Idie state for clock is a high level
$0=$ ldie state for clock is a low level
In $1^{2} C$ Slave mode:
SCK release control
1 = Enable clock
$0=$ Holds clock low (clock stretch). (Used to ensure data selup time.)
In $1^{2} \mathrm{C}$ Master mode:
Unused in this mode
SSPM3:SsPM0: Synchronous Senial Port Mode Select bits
$0000=$ SPI Master mode, clock $=$ Fosc/4
0001 = SPI Master mode, clock = Fosc/16
$0010=$ SPi Master mode, clock $=$ Fosc/64
0011 = SPI Master mode, clock = TMR2 output/2
$0100=$ SPI Stave mode, clock $=$ SCK pin. SS pin control enabled.
$0101=$ SPI Stave mode, clock $=$ SCK pin. SS pin control disabled. $\overline{S S}$ can be used as $1 / 0$ pin.
$0110=T^{2}$ C Slave mode, 7 -bit address
$0111=1^{2} \mathrm{C}$ Slave mode, 10 -bit address
$1000=1^{2} \mathrm{C}$ Master mode, clock $=$ Fosc $/\left(4^{*}(\right.$ SSPADD +1$\left.)\right)$
$1011=1^{2} \mathrm{C}$ Firmware Controlled Master mode (slave iffe)
$1110=1^{2} \mathrm{C}$ Fimware Controlled Master mode, 7 -bit address with START and STOP bit intermupts enabled $1111=1^{2}$ C Firmware Controled Master mode, 10 -bit address with START and STOP bit interrupts enabled 1001. 1010, 1100, $2101=$ Reserved

PIC16F877/876 REGISTER FILE MAP

	Fie dathes		File Address		Fike Address		File Address
Indirect addr. ${ }^{\text {(') }}$	$\begin{aligned} & 00 h \\ & 01 h \\ & 02 h \\ & 03 h \\ & 04 h \\ & 05 h \\ & 06 h \\ & 07 h \\ & 08 h \\ & 09 h \\ & 0 A h \\ & 0 B h \\ & 0 C h \\ & 00 h \\ & 0 E h \\ & 0 F h \\ & 10 h \\ & 11 h \\ & 12 h \\ & 13 h \\ & 14 h \\ & 15 h \\ & 16 h \\ & 17 h \\ & 18 h \\ & 19 h \\ & 1 A h \\ & 18 h \\ & 16 h \\ & 10 h \\ & 1 E h \\ & 1 F h \\ & 20 h \end{aligned}$	Indirect addr. ${ }^{(2)}$	80\%	Indirect andr. ${ }^{\text {(4) }}$	100\%	modirect adar. ${ }^{\text {P }}$	180h
TMPRO		OPTION_REG	81h	TMRD	101h	OPTION_REG	181h
PCL		PCL	827	PCL	102h	PCL	182n
STATUS		STATUS	83h	STATUS	103h	STATUS	183h
FSR		FSR	84h	FSR	104h	FSR	184h
PORTA		IRISA	85h		105h	+3:k	185h
PORIB		TRISB	86h	PORIB	106m	TRISB	186h
PORTC		TRISC	87h		107h		187h
PORTD ${ }^{(1)}$		TRISD ${ }^{(1)}$	88\%		108\%		188h
PORTE ${ }^{(1)}$		TRISE ${ }^{(1)}$	897		109h		189n
PCLATH		PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON		INTCON	8Bh	INTCON	108h	INTCON	188h
PIR1		PIE1	8Ch	EEDATA	10Ch	EECON1	18Cn
PIR2		PHE2	8Dh	EEADR	10Dn	EECON2	18Dh
TMR1L		PCON	8Eh	EEDATH	10Eh	- $\mathrm{F}_{\text {a }}$,	18Eh
TMR1H			8 Fh	EEADRH	10Fh		18Fh
T1CON			90h		110n		190h
TMR2		SSPCON2	91h		11\%		191h
T2CON		PR2	92h		112n		192h
SSPBUF		SSPADD	93\%		113		193h
SSPCON		SSPSTAT	94h		114h		194h
CCPR1L			95h		115t)		195h
CCPR1H			96h		116h		196h
CCPPICON			97h	General	117h	General	197h
RCSTA		TXSTA	98h	Register	118n	Register	198h
TXREG		SPBRG	997	16 Bytes	1197	16 Bytes	199n
RCREG			9An		11Ah		19Ah
CCPR2L			98h		11Bh		19Bh
CCPR2H			9Ch		11-CH		19Ch
CCP2CON			9Dh		t1Dh		19Dh
ADRESH		ADRESL	9Eh		11Eh		19Eh
ADCONO		ADCON1	9 Ft		11Fh		19Fh
			AOh		120h		1AOh
General Pumpose Regisfer 96 Bytes		General Purpose Register 80 Bytes	EFh FOn FFh	General Purpose Register 80 Bytes	16Fh 170h 17Fn	General Purpose Register 80 Bytes	1EFh
		accesses 70h-7Fh		accesses 70n-7Fh		accesses 70n - 7Fn	1FOh 1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplemented data memory locations, read as 0 . * Not a pinysical register.							
Note 1: These registers are not implemented on the PYC16F876. 2: These registers ane reserved, maintain these registers clear.							

PIC 16F877

ADCONO REGISTER (ADDRESS: 1Fh)

RNW-0	RN-0	R/W-0	RN-0	RN-0	RN-0	U-0	RM-0
ADCS1	ADCSO	CHS2	CHS1	CHS0	GO/DONE	bit 0	
bit 7							

ADCST:ADCSO: AND Conversion Clock Select bits
$00=$ Fosc/2
$01=$ Fosc/B
$10=$ Fosc/32
11 = FRC (clock derived from the intemal AD module RC oscilator)
CHS2:CHSO: Analog Channel Select bits
$000=$ channel 0, (RAOIANO)
001 = channel 1, (RA1/AN1)
$010=$ channel 2, (RA2/AN2)
011 = channel 3, (RA3/AN3)
100 = channel 4, (RA5/AN4)
101 = channel 5, (REO/AN5) ${ }^{(1)}$
$110=$ channel 6 , (RE1/AN6) ${ }^{(1)}$
111 = channel 7, (RE2/AN7) ${ }^{(1)}$
GOIDONE: AD Conversion Status bit

If $A D O N=1$:

$1=A D$ conversion in progress (setting this bit starts the A / D conversion)
$0=A D$ conversion not in progress (this bit is automatically cieared by hardware when the AD conversion is complete)
Unimplemented: Read as '0'
ADON: ADD On bit
1 = AD converter module is operating
$0=A D$ converter module is shut-off and consumes no operating current

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

| U-0 | U-0 | RNW-0 | U-0 | RN-0 | RN-0 | RN-0 | RN-0 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| ADFM | | | | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

ADFM: AD Result Format Select bit

$1=$ Right justified. 6 Most Significant bits of ADRESH are read as " 0 ".
$0=$ Leff justified. 6 Least Significant bits of ADRESL are read as ' 0 '.
Unimplemented: Read as '0'
PCFG3:PCFG0: AD Port Configuration Control bits:

PCFG3: PCFEO	$\begin{array}{\|c\|} \hline \text { AN7 } \\ \text { RE2 } \end{array}$	$\begin{gathered} \text { ANE } 6^{(t)} \\ \text { RE1 } \end{gathered}$	$\begin{array}{\|c} \hline \text { AN5 } 5^{(1)} \\ \text { RE0 } \end{array}$	AN4 RA5	$\begin{aligned} & \text { AN3 } \\ & \text { RA3 } \end{aligned}$	$\begin{aligned} & \text { AN2 } \\ & \text { RA2 } \end{aligned}$	AN1 RA1	$\begin{aligned} & \text { ANO } \\ & \text { RAO } \end{aligned}$	Vreft	Vref-	$\begin{aligned} & \text { Chan/ } \\ & \text { Refs }^{(1)} \end{aligned}$
0000	A	A	A	A	A	A	A	A	Vod	Vss	810
0001	A	A	A	A	Vaxfy	A	A	A	RA3	Vsss	711
0010	D	D	D	A	A	A	A	A	VDD	Vss	50
0011	D	D	D	A	Vreft	A	A	A	RA3	Vss	411
0100	D	D	D	D	A	D	A	A	Vod	Vss	310
0101	D	D	D	D	Vref+	D	A	A	RA3	Vss	271
0118	D	D	D	D	D	D	D	D	Vod	Vss	00
1000	A	A	A	A	Vrefe +	VRef-	A	A	RA3	RA2	612
1001	D	D	A	A	A	A	A	A	Vod	Vss	610
1010	D	D	A	A	Vref*	A	A	A	RA3	Vss	$5 / 1$
1011	D	D	A	A	Viefr	Vref-	A	A	RA3	RA2	$4 / 2$
1100	D	D	D	A	Vref.	Vref-	A	A	RA3	RA2	$3 / 2$
1101	D	D	D	0	Vreft	Vref-	A	A	RA3	RA2	212
1110	D	D	D	0	D	D	D	A	VDo	Vss	110
1111	D	D	D	D	Vreft	Vref-	D	A	RA3	RA2	$1 / 2$

$A=$ Analog input $\quad D=$ Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.
2: This column indicates the number of analog channets available as ADD inputs and the number of anaiog channels used as voltage reference inputs.

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathbf{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared $\quad x=B i t$ is unknown

FIGURE 10-1: USART TRANSMT BLOCK DIAGRAM

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM

