UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION - JULY 2017

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- There are four questions in this paper. Answer all questions. Each question carries
 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS FIVE (5) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

 (a) (i) Draw a block diagram to show the organization of a microprocessor based system assuming typical functions.

(3 marks)

(ii) Write some features of CISC architecture.

(2 marks)

(iii) A program written for 16F84A, includes instructions 'toll equ 1Bh' and 'fill equ 10Ah'. Based on these, write the machine instructions (op codes) for the following assembly statements.
decf toll,0 goto fill movlw .55

(4 marks)

(b) A block of a program using 16F84A with a *10MHz* crystal is shown in Figure-Q1.

bsf	status,5
movlw	b'11000110'
movwf	option_reg

Figure-Q1

(i) Explain what is meant by the statements in Figure-Q1.

(4 marks)

(ii) Calculate the time taken by the timer to increment one count.

(3 marks)

- (c) In an application, a *4MHz* crystal is used to provide clock signal to a 16F84A.
 - (i) It is required to overflow the timer in every *15ms*. State how you are going to do it with minimum timing error.

(5 marks)

(ii) What is the percentage timing error in (i) above?

(2 marks)

(iii) Show the bit configuration of the option register with respect to (i) above.

(2 marks)

QUESTION TWO (25 marks)

Consider the flow chart of a subroutine shown in Figure-Q2. Assume that the device in use is a 16F84A clocked with a *8MHz* crystal.

<u>Figure – Q2</u>

(a) Write the assembly code for this subroutine.

(b) Derive the delay time provided by this subroutine.

(c) How do you obtain a delay as close as possible to 0.5ms?

(5 marks)

(6 marks)

(7 marks)

(d) Draw a flow chart of a subroutine which will provide a delay as close as possible to *10ms* using (c) above. Your program must consider for a short program length. Show the necessary calculations required.

(7 marks)

QUESTION THREE (25 marks)

A common cathode LED display seven segments 'a' to 'g' are connected to PortB(0) to PortB(6) pins of a 16F84A, respectively. The microcontroller runs on a RC clock oscillator of 50KHz.

(a) Show the complete circuit diagram marking the 16F84A pin numbers clearly. You may draw clock oscillator R and C without values.

(7 marks)

(b) Draw a program flow chart/s with enough details and labels, to display 'F6' character by character in a continuous loop. Each character must be visible for 0.6 sec. The flow charts of any subroutines and relevant calculations must also be shown.

(12 marks)

(c) Show the contents of the *TRISB* and *OPTION* registers used for this program.

(6 marks)

QUESTION FOUR (25 marks)

(a) (i) It is required to interrupt a 16F84A by the timer and by an external signal on PortB(0). Show the bit configuration of the *INTCON* register for this case.

(4 marks)

(ii) While executing the program in (i) above, *INTCON* shows a value of 32h at some point of time. Describe the conditions relevant at this situation.

(4 marks)

 (b) (i) Draw a diagram to show the connections between 16F877 and a device, both using SPI interface. You must show the usual pin names and pin numbers where possible.

(4 marks)

(ii) If the 16F877 is running on a 10MHz crystal oscillator with SSPSTAT and SSPCON registers configured as C0h and 32h, estimate the maximum data rate of a device that can be connected using SPI.

(4 marks)

- (c) Consider the use of Analog to Digital Converter (ADC) in a 16F877 clocked with a 8MHz crystal oscillator.
 - (i) Describe what is meant if ADCON0 is,

?	?	0	1	0	0	0	1
7	6	5	4	3	2	1	0

(ii) Complete *ADCON0* bits (bit 6 and bit 7).

(3 marks)

(3 marks)

(iii) Describe what is meant if ADCON1 is,

0	0	0	0	0	1	0	0
7	6	5	4	3	2	1	0

(3 marks)

Page 5 of 5

<u>PIC 16F84A</u>

File Addre	ŝS	F	ile Address
COh	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
0 5h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	家的学习可以		87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch
4Fh 50h			CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	RAV-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

PD: Powe.-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SIEEP instruction

Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

 θ = No carry-out from the 4th low order bit of the result

C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, REF) instructions, this bit is loaded with either the high or low order bit of the source register.

Data Page 1 of 10

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

RB/U: PORTB Pull-up Enable bit

.

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of R80/INT pin

0 = Interrupt on falling edge of RB0/INT pin

TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)

T0SE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin

PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate

лі удіце	TMR0 Rate	NDT Role
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:250	1 : 128

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RAM-0	R/W-0	R/W-x
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
bit 7							bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

c = Disables all interrupts

EEIS: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

6 = Disables the EE Write Complete interrupt

T0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

INTE: RBD/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt o = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt

T0IF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

INTF: R80/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

p = None of the RB7:RB4 pins have changed state

Data Page 2 of 10

16F84A and 16F877

· `

.

٠

F	Mnemon	с,	Description	Cuolor		14-Bit	Opcode)	Status	Notor
	Operand	5	Description	Cycles	MSb			LSD	Affected	Notes
			BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	พร				
ADDV	VF	f, d	Add W and 1	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDV	VF	1, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	:	1	Clear f	1	00	0001	lfff	íffí	Z	2
CLRW	¥	-	Clear W	1	00	0001	$0 \times \times x$	XXXX	Z	
COM	F	1. d	Complement f	1	00	1001	dííí	titi	Z	1,2
DECF	:	f, d	Decrement f	1	00	0011	dfff	iiii	Z	1,2
DECF	*SZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	fiff		1,2,3
INCF		1, d	increment f	1	00	1010	dfii	ffff	Z	1,2
INCF	SZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	díií	ffff		1.2,3
IORW	/F	f, đ	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVE	F	1, d	Move f	1	00	1000	dfff	Ĩfff	Z	1,2
MOV	WF	ſ	Move W to f	1	00	0000	lfff	itti		
NOP		-	No Operation	1	00	0000	0xx0	0000		
RLF		f, d	Rolate Left f through Carry	1	00	1101	dfff	titt	С	1,2
RRF		f, d	Rotate Right f through Carry	1	00	1100	díff	fifi	C	1,2
SUBV	VF	f, d	Subtract W from f	1	00	0010	dfft	iffi	C,DC,Z	1,2
SWAF	٥F	1. d	Swap nibbles in f	1	00	1110	dfff	iiii		1,2
XORV	NF	f, d	Exclusive OR W with f	1	00	0110	dífí	ffff	Z	1,2
			BIT-ORIENTED FILE REGIST	ER OPEF	ATIO	IS		,		• · · · · · · · · · · · · · · · · · · ·
BCF		ſ, b	Bit Clear f	1	01	00bb	bfff	fiff		1,2
BSF		1. D	Bil Sel f	1	01	01bb	bfff	ffff	}	1.2
BTFS	С	ſ, b	Bit Test 1, Skip if Clear	1 (2)	01	1000	biit	1111		3
BTFS	s	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
			LITERAL AND CONTROL	OPERAT	IONS					1
ADDL	W	k	Add liferal and W	1	1 11	1117	kkkk	k) kk	C.DC.Z	
ANDL	W	ĸ	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL		ĸ	Call subroutine	2	10	Okkk	kkkk.	kkkk	_	
CLRV	урт		Clear Watchdog Timer	1	00	0000	0110	0100	TOPD	
GOTO)	K'	Go to address	2	10	1 kkk	kkkk	kkkk		
IORLY	N	ĸ	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	7	
MOVE	W	k	Move literal to W	1	11	DOXX	kkk	kkkk		
RETE	ΊE		Return from interrupt	2	00	0000	0000	1001]	
RET	w	ĸ	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETU	IRN	-	Return from Subroutine	2	00	0000	6000	1000		
SLEE	P	-	Go into standby mode	1	00	0000	0110	0011	TOPD	
SUBI	W	k	Subtract W from literal		11	1707	kkkk	ktkt	CDC7	
XORL	W	ĸ	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an VO register is modified as a function of itself (e.g., NOVE PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Data Page 4 of 10

PIC 16F877

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In I²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on falling edge of SCK

0 = Data transmitted on rising edge of SCK

In I²C Master or Slave mode:

1 = Input levels conform to SMBus spec

0 = Input levels conform to 1²C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P. STOP bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled. SSPEN is cleared.)

1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)

0 = START bit was not detected last

R/W: Read/Write bit Information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In I²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = Indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mor'e only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Data Page 5 of 10

PIC 16F877

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	RM-0						
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit 0

WCOL: Write Collision Detect bit

Master mode:

1 = A write to SSPBUF was attempted while the I2C conditions were not valid

- 0 = No collision
- Slave mode:
- 1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software)
- 0 = No collision

SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.)
- 0 = No overflow
- in I²C mode:

1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)

0 = No overflow

SSPEN: Synchronous Serial Port Enable bit

in SPI mode,

When enabled, these pins must be properly configured as input or output

1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins

0 = Disables serial port and configures these pins as I/O port pins

In I²C mode,

When enabled, these pins must be properly configured as input or output

1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins

CKP: Clock Polarity Select bit

In SPI mode:

1 = Idle state for clock is a high level

0 = Idle state for clock is a low level

In I²C Slave mode:

SCK release control

1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode:

Unused in this mode

SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0000 = SPI Master mode, clock = Fosc/4

0001 = SPI Master mode, clock = Fosc/16

0010 = SPI Master mode, clock = Fosc/64

- 0011 = SPI Master mode, clock = TMR2 output/2
- 0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled.
- 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.
- 0110 = I^2C Slave mode, 7-bit address
- $0111 = l^2C$ Slave mode, 10-bit address

 $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SSPADD+1))

- 1011 = I^2C Firmware Controlled Master mode (slave idle)
- 1110 = I²C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled
- 1111 = I²C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled
- 1001, 1010, 1100, 1101 = Reserved

Data Page 6 of 10

PIC 16F877

÷

PIC16F877/876 REGISTER FILE MAP

..

	File Address	,	File Address	,	File Address		⊢¤e Addre
Indirect addr. (*)	00h	Indirect addr.(")	80h	Indirect addr. ^(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87ħ	110000000000000000000000000000000000000	107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h	1100 34 43.	108h	Contraction of	188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h	- Martine	109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	06h	INTCON	8Bh	INTCON	108h	INTCON	18E
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	ODh	PIE2	8Dh	EEADR	10Dh	EECON2	18E
TMR1L	OEh	PCON	8Eh	EEDATH	10Eh	Reserved®	18E
TMR1H	OFh		8Fh	EEADRH	10Fh	Reserved	18F
T1CON	10h		90h		110h	THE REAL POINT OF REAL POINT	190
TMR2	11h	SSPCON2	91h		111h	1	191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h		95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	- 18h	TXSTA	98h	Purpose	118h	Purpose	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah		11Ah		19A
CCPR2L	18h	State of the second	9Bh		11Bh		19E
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		19E
ADRESH	1Eh	ADRESL	9Eh		11Eh		1SE
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
	20h		A0h		120h		1A(
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	405	General Purpose Register 80 Bytes	1 F F
20 03103	75.5	accesses 70h-7Fh	FOh	accesses 70h-7Fh	10FN 170h	accesses 70h - 7Fh	1F0
Bank 0		Bank 1		Bank 2	1161	Bank 3	11-1

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

.

Note 1: These registers are not implemented on the PIC16F876.2: These registers are reserved, maintain these registers clear.

<u>PIC 16F877</u>

ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
bit 7							hit O

ADCS1: ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000 =channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)⁽¹⁾

110 = channel 6, (RE1/AN6)⁽¹⁾

 $111 = \text{channel 7, } (\text{RE2/AN7})^{(1)}$

CO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

a = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

<u>PIC 16F877</u>

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		$\left \frac{1}{2} - \sigma^{2} \right $		PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

ADFM: A/D Result Format Select bit

1 = Right justified, 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	ANO RAO	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	А	A	А	A	A	A	A	A	VDD	Vss	8/0
0001	А	A	А	A	VREF+	A	A	А	RA3	Vss	7/1
0010	D	D	D	A	А	A	Α	A	VDD	Vss	5/0
0011	D	D	D	А	VREF+	A	A	A	RA3	Vss	4/1
0100	D	D	D	D	A	D	А	А	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	А	A	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	А	А	A	Α	VREF+	VREF-	A	A	RA3	RA2	6/2
1001	D	D	A	А	A	А	A	A	Vod	Vss	6/0
1010	D	D	A	А	VREF+	A	Å	A	RA3	Vss	5/1
1011	D	D	A	А	VREF+	VREF-	A	А	RA3	RA2	4/2
1100	D	D	D	A	VREF+	VREF-	А	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	A	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

.

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
≓n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

PIC 15F877

Data Page 10 of 10