UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION - JULY 2017

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are four questions in this paper. Answer all questions. Each question carries 25 marks.
2. If you think not enough data has been given in any question, you nay assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

(a) (i) Draw a block diagram to show the organization of a microprocessor based system assuming typical functions.
(3 marks)
(ii) Write some features of CISC architecture.
(iii) A program written for 16 F 84 A , includes instructions 'toll equ 1 Bh ' and 'fill equ $10 \mathrm{Ah}^{\prime}$. Based on these, write the machine instructions (op codes) for the following assembly statements.
decf toll, 0
goto fill
bcf toll, 2
moviw. 55
(4 marks)
(b) A block of a program using 16F84A with a 10 MHz crystal is shown in Figure-Q1.

Figure-Q1
(i) Explain what is meant by the statements in Figure-Q1.
(ii) Calculate the time taken by the timer to increment one count.
(3 marks)
(c) In an application, a 4 MHz crystal is used to provide clock signal to a 16 F 84 A .
(i) It is required to overflow the timer in every 15 ms . State how you are going to do it with minimum timing error.
(5 marks)
(ii) What is the percentage timing error in (i) above?
(2 marks)
(iii) Show the bit configuration of the option register with respect to (i) above.

QUESTION TWO (25 marks)

Consider the flow chart of a subroutine shown in Figure-Q2. Assume that the device in use is a 16 F 84 A clocked with a 8 MHz crystal.

Figure-Q2
(a) Write the assembly code for this subroutine.
(b) Derive the delay time provided by this subroutine.
(c) How do you obtain a delay as close as possible to 0.5 ms ?
(d) Draw a flow chart of a subroutine which will provide a delay as close as possible to 10 ms using (c) above. Your program must consider for a short program length. Show the necessary calculations required.

QUESTION THREE (25 marks)

A common cathode LED display seven segments ' a ' to ' g ' are connected to PortB(0) to PortB(6) pins of a 16 F 84 A , respectively. The microcontroller runs on a RC clock oscillator of 50 KHz .
(a) Show the complete circuit diagram marking the 16F84A pin numbers clearly. You may draw clock oscillator R and C without values.

> (7 marks)
(b) Draw a program flow chart/s with enough details and labels, to display 'F6' character by character in a continuous loop. Each character must be visible for 0.6 sec . The flow charts of any subroutines and relevant calculations must also be shown.
(c) Show the contents of the TRISB and OPTION registers used for this program.

QUESTION FOUR (25 marks)

(a) (i) It is required to interrupt a 16F84A by the timer and by an external signal on $\operatorname{PortB}(0)$. Show the bit configuration of the $I N T C O N$ register for this case.
(4 marks)
(ii) While executing the program in (i) above, INTCON shows a value of 32 h at some point of time. Describe the conditions relevant at this situation.
(4 marks)
(b) (i) Draw a diagram to show the connections between 16F877 and a device, both using SPI interface. You must show the usual pin names and pin numbers where possible.
(ii) If the 16 F 877 is running on a 10 MHz crystal oscillator with SSPSTAT and SSPCON registers configured as COh and $32 h$, estimate the maximum data rate of a device that can be connected using SPI.
(4 marks)
(c) Consider the use of Analog to Digital Converter (ADC) in a 16F877 clocked with a 8 MHz crystal oscillator.
(i) Describe what is meant if $A D C O N O$ is,

$?$	$?$	0	1	0	0	0	1
7	6	5	4	3	2	1	0

(ii) Complete $A D C O N 0$ bits (bit 6 and bit 7).
(iii) Describe what is meant if $A D C O N I$ is,

0	0	0	0	0	1	0	0
7	6	5	4	3	2	1	0

PIC 16F84A

STATUS REGISTER (ADDRESS 03h, 83h)

| RW-0 | RN0 | RW0 | R-1 | R-1 | RN-x | RW-x | RW-x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IRP | RP1 | RPO | $\overline{T O}$ | $\overline{\mathrm{FD}}$ | Z | DC | C |
| bit 7 | | | | | | | |

Unimplemented: Mantain as ' O '
RPO: Register Bank Select bits fused for direct aderessing)
$01=$ Bank $1($ (80n $-F F D)$
$00=\operatorname{Bank} 0(00 \mathrm{~h}-7 \mathrm{FH})$
TO. Time-out bit
$1=$ After power-up, crawot instruction, or ayse instruction
$0=$ A WOT time-out occured
PD: Powe - down bit
$1=$ After power-up or by the ceswer instruction
$0=$ By execution of the seeze instruction
Z. Zero bit
$1=$ The resul of an arithmetic or logic operation is zero
$0=$ The result of an arithmetic or logic operation is not zero
DC: Digit carybonow bit (aDowe, ADoLw, ausuw, subue instructions) (forborrow, the polarity is reversed)
$1=$ A carry-out from the 4 th low erder bit of the result occurred
$0=$ No carb-out from the 4 h low order bit of the result
 reversed)
$1=$ A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Mosi Significant bit of the result occured
Note: A subtraction is executed by adding the wo's complement of the second operand. For rotate (Ras, RIF) instructions, this bit is foded with ether the high or low order bit of the source register

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

RW-1	PW-1	RNW-1	RW-1	RW-1	RW-1	RW-1	RW-1
REPU	INTEDG	TOCS	TUSE	PSA	PS2	PS1	PSO
bt 7 b bit							

REVU: PORTB PUIt Enable bit
$1=$ PORTB pullups are disabled
$0=$ PORTB pull-ups are enabled by inctividual port lateh values
INTEDG: Interrupt Edge Select bit
$1=$ Interrupt on rising edge of REONNT pin
$0=$ Interrupt on falling edge of RBO/INT pin
TOCS: TMRO Clock Source Select bit
$1=$ Trensition on RAs/TOCKI pin
$0=$ internal instruction cycle dock (CLKOUT)
TESE: TMRO Source Edge Select bit
$1=$ Inctement on high-to-tow transition on RAA/TOCKI pin
$0=$ increnent on iow-to-high transition on RAATOCKI pin
PSA: Prescaler Assignment bit
$1=$ Prescaler is assimned to the WOT
$0=$ Prescaler is assigned to the Timero module
PS2:PSO: Frescaler Rate Select bits
Bit Value TMRO Rate WOT Rate

000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 10$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 144$
111	$1: 256$	$1: 128$

INTCON REGISTER (ADORESS OBh, 8Bh)

RINO	RW.	RN0	RWO	RW-9	RW-	RW-0	RW-x
GE	EEIE	TOIE	INTE	RBIE	TOF	INTF	REIF
bit 7 del							

GIE: Gobal merupt Enable bit
1 = Enables all unmasked internupts
0 = Disables all interrupis
EEIE EE White Complete Interupt Enable bit
1 = Enables the EE Write Complete interupts
$0=$ Disables the EE Write Complete interupt
TOIE: TMRO Overfow Interupt Enatle bit
1 = Enaber the TMRO internupt
$0=$ Cisables the TMRO nterrupt
INTE: RODINT External Interrupt Enable bit
$i^{*}=$ Enables the RBofNT external interrupt
$0=$ Disables the RBOANT external intertupt
REIE: RB Port Change interupt Enable bit
$1=$ Enables the RB port change interupt
$0=$ Disables the RB por change internipt
TOFF: TMR O Overfow intermpt Flag bit
1 = TMRO register has oventowed (must be cleared in software)
$0=$ TMRD register did not overfiow
WTF: REOINT Extemal interupt Flag bit
$1=$ The REDINT extemal intertupt accured (must be cleared in software)
$0=$ The REOINT extemal interrupt did not occur
RBIF: RB Port Change interlupt Flag bit
1 = At least one of the $2 B 7$ RE4 pins changed state (must be cleared in soffare)
$0=$ None of the RB7.RB4 pins have changed state

16F84A and 16F877

Mnemonic. Cperands		Description	cycles	14-Eit Opcode				status Affected	Notes	
		MSb				LS\%				
BYTE-ORIENTED FILE REGISTER OFERATIONS										
noowf	1. 0		AddW and	1	00	0111	Atte	212	C.DC, 2	1.2
ANDWF	1, 0	ANO W wht 1	1	00	0101	afet	-txt	z	1.2	
CLRF	1	Clear 1	1	00	0001	14Ef	Hite	z	2	
CLRW	-	Clear w	1	00	0001	oxce	xcox	2		
COMF	1.d	Complement	1	00	1001	dftit	125	z	1.2	
DECF	1,d	Decrement	1	00	0011	dice	: 21	2	1.2	
DECFSZ	I, d	Decrement f, Skip if o	1 (2)	00	1011	ditit	Etes		1,2,3	
INCF	1.0	increment I	1	0 c	1010	Qfic	+2I5	z	1.2	
INCFSZ	1, d	Increment f. Skip it 0	1 (2)	00	1111	dite	EFES		1,2,3	
10RWF	f, d	Inclusive $O R$ w wth f	1	00	0200	detit	EfEI	z	1,2	
MOVF	1.10	Move I	1	00	1000	difit	こeff	2	1.2	
MOWwF	1	Nove W to t	1	00	0000	LiE:	ETET			
NOP	-	No Operation	1	02	0000	0xx0	0000			
RLF	f.d	Rolate Lett t trough Oary	1	00	1101	dift	test	C	1.2	
RRF	f.d	Rotale Right ithrough Cary	1	00	1100	dstit	[1tif	c	1.2	
SUBWF	1, d	Subtract W from 1	?	00	0010	dfit	[fft	C.OC.Z	1,2	
SWAPF	1. ${ }^{\text {d }}$	Swap nibbles in t	;	00	1110	drfi	1tis		1.2	
XORWF	1.0	Exclusive OR W with	1	00	0110	ater	ffte	z	1,2	
SIT-ORIENTED FILE REGISTER OFERATIONS										
BCF	f,b	Bal clear 1	1	01	0050	DEt	E15		1.2	
BSF	1, b	Bil Sel 1	1	01	01bb	miti	Erit		1.2	
BTFSC	1, b	B4 Test 1, Skip in Clear	1(2)	01	100b	BEE	f:Et		3	
BTFSS	I, b	Bht Test 1, Skip if Sel	$1(2)$	01	1106	beff	fitit		3	
LITERAL ANO CONTROL OPERATIONS										
ADOLW	k	Add literal and W	1	11	111x	6\%	krek	G, DC, 2		
ANDLW	k	ANO literal wilh W	1	11	1091	Fink	cone	z		
CALL	K	Call subroutine	2	10	Oxite	Sth\%	Wht			
CLAWWDT	*	Clear Watchdog Tmer	1	00	0000	0110	0100	TO.P0		
goto	k	Go to address	2	10	126	brye	WE\%			
IORLW	k	Inclusive OR literat with W	1	11	1000	nhty	Enow	z		
Erovew	k	Nove literal to W	1	11	0000	nubk	khes			
retfie	-	Retum irom interrupt	2	00	0000	0000	1002			
RETLW	*	Retum with iteral in w	2	21	0100	when	kWCK			
RETURN	-	Return from subroutine	2	00	0000	5000	1000			
SLEEP	-	Co into standby mode	1	00	0000	0210	0015	$\overline{T O, P D}$		
SUELW	*	Sutract W from heral	1	11	120x	krex	Fhks	C,DC, Z		
XORLW	k	Exclusive OR liferal win w	1	$\pm \pm$	2010	crst	FEFK	z		

No: 1: When an $V O$ register is modiled as a function of liself (e.g. wove woses, i), the value used will be that value present on the pins themsetves, For example, if the data fatch is 't for a pin configured as input and is diven bow by an extemal device. the data will be wdten back with a 0 .
2: If this mstruction is execuied on the Thato rec ster (and, where applicabte $d=1$, the prescater wil be cteared it assigned to the Tmero Mocule
3: If Program counter (PC) is moditied or a concitional test is tree. the instruction requires two cyctes. The second cycie is execuled as a mo

PIC 16F877
Pin Diagram

PDIP	
$\overline{\mathrm{MCLRNPP}} \longrightarrow \square$	Q $40 \square$ RB7PGO
RAOLANO $\longrightarrow \square_{2}$	$39 \square \longrightarrow$ RBEPGC
RA1IAN1 $-\mathrm{Cl}_{3}$	$36 \square \longrightarrow$ RBS
RAZAANZMREE $\longrightarrow \square$	$37 \square \rightarrow$ RE4
RAYAN3NRES \rightarrow - 5	$36 \square \longrightarrow$ RE3PGM
RAdTOCKI \rightarrow -	$35 \square-$ RE2
RASNAM/ES - - ${ }^{\text {P }}$	$\because 34 \square \rightarrow$ RB1
REORLANS $\rightarrow \square 8$	
RE1MTVANO \rightarrow - ${ }^{\text {a }}$	$\stackrel{\infty}{\infty} \quad 32-\mathrm{V}$
RE2SESANT $\rightarrow \square 10$	N $31 \square+\mathrm{Vss}$
V00 $-\square^{11}$	$\infty \quad 30 \square \longrightarrow$ RDTPSPT
$\mathrm{Vss} \longrightarrow-12$	$029 \square \rightarrow$ RDepsps
OSCVICLKIN - - 13	
OSC2CLROUT - $\square 14$	$\frac{27 \square}{\sim} \quad 4 \mathrm{RC4Psp} 4$
RCOTHOSOT1CF - - 15	- $26 \square \rightarrow \mathrm{RC7m} 0 \mathrm{OT}$
RC1T10SUCCP2 - - 16	$25 \square \rightarrow$ RCEINICK
$\mathrm{RCNCCP1}-\square 17$	$24 \square \longrightarrow$ RCSASDO
$\mathrm{RC3FCNSCL} \rightarrow-18$	$23 \square \rightarrow$ RC4/SCISDA
FDOPSP0 $-\square 19$	$22 口 \longrightarrow$ RD3PSP3
RD1PSP9 $\rightarrow-\square 20$	$21 \square \rightarrow$ RO2PSP2

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

RND	RN-0	R-0	R-0	$R-0$	$R-0$	$R-0$	$R-0$
SMP	CKE	O/A	P	S	$R \bar{W}$	$U A$	$B F$
bit 7							

SMP: Sample bit
SPI Master mode:
1 = mput data sampled at end of data output the
$0=$ imput data sampled at middle of data cutput time
SPI Slave mode:
SMP must be cleared when SPI is used in slave mode
In $1^{2} \mathrm{C}$ Master or Slave mode:
$1=$ Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
$0=$ Slew rate control enabled for high speed mode (400 kHz)
CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)
SPI mode:
For CKP $=0$
1 = Data transmitted on rising edge of SCK
$0=$ Data transmitted on falling edge of SCK
For CKP = 1
1 = Data transmitted on falling edge of SCK
$0=$ Data transmitted on nising edge of SCK
In 1^{2} C Master or Slave mode:
$1=$ input levels conform to SMBus spec
$0=$ input levels conform to $1^{2} \mathrm{C}$ specs
DIA: Dataladdress bit ($7^{2} \mathrm{C}$ mode only)
1 = Indicates that the last byte recelved or transmited was data
$0=$ Indicates that the lasi byie recelved or transmitted was address
F: STOP bit
(12C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
$1=$ indicates that a sTOP bit has been detected last this bit is 0 ' on RESET)
$0=S T O P$ bit was not delecled last
S: START DIL
($1^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
$1=$ Indicates that a START bit has been detected last (this bit is '0' on RESET)
$0=$ START bit was not detected last
RW: Read M inite bit Information ($1^{2} \mathrm{C}$ mode ony)
This bitholds the RW bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.
in $\mathrm{P}^{2} \mathrm{C}$ Slave mode:
1 = Read
$0=$ Write
In 1^{2} C Moster mode:
$1=$ Transmit is in progress
$0=$ Transmit is not in progress
Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. UA: Update Address ($10-1$ if $\mathrm{F}^{2} \mathrm{C}$ mode only)
$1=$ Indicates that the user needs to update the address in the SSPADO reficter
$0=$ Address does not need to be updated
BF: Buffer Full Status bit
Receme (SPl and 1^{2} C modes):
$I=$ Receive complete, SSPBUF is full
$0=$ Receive not complete, SSPBUF is empty
Transmit (${ }^{2} \mathrm{C}$ mote only):
1 = Data transmit in progress (does not include the ACK and STOP buts), SSFBUF is tut
$0=$ Data fransmit complete foes not incluce the ACK and STOP bits), SSPBUF is empty

PIC 16F877

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

| RNW-0 | RN-0 | RN-0 | RN-0 | RW-0 | RN-0 | RNO | RN-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPMO |

bll 7

WCOL: Write Collision Detect bit
Master mode.
$I=A$ write to $S S P B U F$ was atternpted while the $12 C$ conditions were not valld
$0=$ No collision
Slave mode:
$1=$ SSPBUF register is written while still transmiting the previous word (must be cleared in software)
$0=$ No collision
SSPOV: Receive Overflow tndicator bit
In SPImode:
$1=$ A new byte is received while SSPBUF holds previous data. Data in SSPSR is fost on overtow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode the overflow bit is not set, since each operation is initiated by witing to the SSPBUF register. (Must be cleared in software.)

$0=$ No ovefliow

in $1^{2} \mathrm{C}$ mode
$I=$ Abyte is received while the SSPBUF is holding the previous byte. SSPOV is a "don care" in Transmit mode. (Must be cleared in software.)
$0=$ No overflow
SSPEN: Synchronous Serial Port Enable bit
In SPImode.
When enabled, these pins must be propeny configured as input or output
$I=$ Enables serial port and contigures SCK, SDO, SOI, and $S S$ as the source of the serial port pins
$0=$ Disables serial port and configures these pins as 10 port pins
In ${ }^{2}$ C mode,
When enabled, these pins must be propeny configured as imput or output
$1=$ Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
$0=$ Disables serial port and confgures these pins as 10 port pins
CKP: Clack Polarity Select bit
In SPImode:
$i=$ ldte state for clock is a high tevel
$0=$ idle state for clock is a low level
in 1^{2} C Slave mode:
SCK release control
I = Enable clock
$0=$ Holds clock low (clock stretch), (Used to ensure data setup time.)
in $1^{2} \mathrm{C}$ Mastermode:
Unused in this mode
SSPMB:SSFMO: Synchronous Serial Port Mode Select bits
$0000=S P I$ Master mode, clock $=$ Fose/4
$0001=$ SPI Master mone, clock $=$ Fosch 6
$0010=$ SPI Master mode, clock $=$ FOSCIG4
$0011=$ SPl Master mode, clock $=$ TMR2 ouput2
$0100=S P I$ Slave mode, clock $=$ SCK pin 5 S pin control enabled
$0101=S P 1$ Slave mode, clock $=$ SCK pin. $\overline{S S}$ pin control disabled. $\overline{S S}$ can be used as lua pin.
$9110=12 \mathrm{C}$ Slave mode, 7 -bit address
$0111=I^{2} \mathrm{C}$ slave mode, 10 -bit adoress
$1000=12 \mathrm{C}$ Master mode, clock $=$ Fosc $/(4 *(\mathrm{SSPADO}+1))$
$1011=1^{2} \mathrm{C}$ Fimware Controlled Master mode (siave ide)
$1110=\mathcal{F}^{2} \mathrm{C}$ Fimware Controlled waster mode, 7 bit address with START and STOP bit interupts enabled
$1111=1^{2} \mathrm{C}$ Firmware Controlled Master made, 10 bit adress with START and STOP bit intemupts enabled
1001, 1010, $1100,1101=$ Reserved

PIC 16F877
PIC16F877/876 REGISTER FILE MAP

PIC 16F877

ADCONO REGISTER (ADDRESS: 1Fh)

RN-0	RN-0	RN-0	RN-0	RN-0	RN-0	U-0	RN-0
ADCS1	ADCS0	CHS2	CHS1	CHSO	GOIDONE		ADON
bit 7							

ADCS1:ADCS0: AD Conversion Clock Select bits
$00=\mathrm{Fosc} / 2$
$01=\mathrm{Fosc} / 8$
$10=$ Fosc/32
11 = FRC (clock derived from the intermal AD module RC oscillator)
CHS2:CHSO: Analog Channel Select bits
$000=$ channel 0, (RAOIANO)
$001=$ channel 1, (RA1/AN1)
$010=$ channel 2, (RA2/AN2)
011 = chamel 3, (RA3/AN3)
$100=$ channel 4 , (RA5/AN4)
$101=$ channel $5,(\text { REO/AN5 })^{(1)}$
$110=$ channel $6,(\text { REv/AN } 6)^{11)}$
III = channel 7, (RE2/AN7) ${ }^{11}$
COIDONE: AD Conversion Status bit
IIADON = 1 :
$1=A D$ conversion in progress (setting this bit starts the $A D$ conversion)
$0=A D$ conversion not in progress (this bit is automatically cleared by hardware when the AD conversion is complete)
Unimplemented: Read as ' 0 '
ADON: AD On bit
$I=A D$ converter module is operating
$0=A D$ converter module is shut-off and consumes no operating current

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0 1 U- \quad RN-0 \quad U-0
ADFM
bit 7

ADFM: AD Resul: Format Select bit
$1=$ Right justified. 6 Most Significant bits of ADRESH are read as '0'.
$0=$ Left jusified. 6 Least Significant bits of ADRESL are read as 0 '
Unimplemented: Read as '0'
PCFG3:PCFGO: AD Port Configuration Control bits:

PCFG3: PCFGO	$A N 7^{(1)}$ RE2	$A N 6^{(1)}$ RE1	AN5 ${ }^{(1)}$ REO	$\begin{aligned} & \text { AN4 } \\ & \text { RAS } \end{aligned}$	$\begin{aligned} & \text { AN3 } \\ & \text { RA3 } \end{aligned}$	AN2 RA2	AN1 RA1	$\begin{aligned} & \text { ANO } \\ & \text { RAO } \end{aligned}$	Vref+	Vref-	CHAN Refs ${ }^{[2]}$
0000	A	A	A	A	A	A	A	A	VDD	Vss	810
0001	A	A	A	A	VREF+	A	A	A	RA 3	Vss	711
0010	D	D	D	A	A	A	A	A	VDD	Vss	510
0011	D	D	D	A	VREF+	A	A	A	RA3	V's	$4 / 1$
0100	D	D	D	D	A	D	A	A	VOD	Vss	310
0101	D	O	D	D	VREF+	D	A	A	RA3	V ss	211
021x	D	D	0	D	D	0	0	D	VD0	VSs	010
1000	A	A	A	A	Vrieft	VREF-	A	A	RA3	RAD	612
1001	D	D	A	A	A	A	A	A	Vod	Vss	6 CO
1010	D	D	A	A	VREF+	A	A	A	RA3	Vss	51
2011	D	D	A	A	VREF+	VREF-	A	A	RA3 3	RA2	$4 / 2$
1100	D	D	D	A	Vreft	VREF-	A	A	RA3	FA2	$3 / 2$
1101	D	D	D	D	Vreft	VREF-	A	A	RA3	RA2	22
1110	D	D	D	D	0	D	D	A	Voo	$V 55$	110
1111	D	D	D	D	VREF+	VREF-	0	A	RA. 3	RA?	$1 / 2$

$A=$ Analog input $\quad D=$ Digital $1 / 0$

Note 1: These channels are not available on PlCibFg73/876 devices.
2: This colum indicates the number of analog channels avalable as AD inpuis and the number of analog channels used as volage reference inputs.

Legend:			
$R=$ Readable bit	W = Witable bit	$U=$ Unimplemented bit, read as ${ }^{\prime} 0$	
$\therefore \mathrm{n}=$ Value at POR	' 1 ' = Bf i is set	'0' $=$ Bit is cleared	$x=B i t$ is unknown

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

FIGURE 10-4: USART RECENE BLOCK DIAGRAM

