UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, SECOND SEMESTER JULY 2017

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:SOLID STATE ELECTRONICSCOURSE CODE:EE429

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are FOUR questions in this paper. Answer all questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question you may assume any reasonable values.
- 3. A list of useful Equations and constants is attached

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS NINE (8) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

- a) Determine the number of atoms per unit cell in a body centered cubic Lattice. (3)
- b) For each of the diagrams below, determine
 - i. The plane shown (shaded)
 - ii. The direction indicated by the arrow.

c) Consider the plane (100) in a face centered cubic lattice. Determine

- i. The number of atoms in the plane (2)
- ii. The surface density of the atoms if the lattice constant is 5 Å. NB: the surface density is the number of atoms per plane / surface area of the plane. (3)
- d) The probability that a state at $E_c + kT$ is occupied by an electron is equal to the probability that a state at $E_v kT$ is empty. Determine the position of the Fermi energy level as a function of E_c and E_v . (5)
- e) The de Broglie wavelength of an electron is 85 Å. Determine the electron energy (eV), momentum, and velocity. (3)
- f) Given that the lattice constant of GaAs is 5.65, determine the number of Ga atoms and As atoms per cm³.
 (3)

(3)

(3)

QUESTION TWO (25 marks)

- a) If the density of states function in the conduction band of a particular semiconductor is a constant equal to $g_c(E) = K$ where K is a constant, derive the expression for the thermal-equilibrium concentration of electrons in the conduction band, assuming Fermi-Dirac statistics and assuming the Boltzmann approximation is valid. (5)
- b) Silicon at T=300K is doped with acceptor atoms at a concentration of $7 \times 10^{15} cm^{-3}$
 - i. Determine $E_F E_V$. (3)
 - ii. Calculate the concentration of acceptor atoms that must be added to move the position of the Fermi level 1kT closer to the valence-band edge (5)
- c) Consider a sample of silicon at T=300K. Assume that the electron concentration varies linearly with distance as shown in the figure below. The diffusion current density is found to be $J_n = 0.19 \text{ A/cm}^2$. If the electron diffusion coefficient is $D_n = 25 \text{ cm}^2/\text{s}$, determine the electron concentration at x = 0. (6)

d) The electron concentration at T=300K is given by

$$n(x) = 10^{16} exp\left(\frac{-x}{18}\right) cm^{-3}$$

where x is measured in Nm and is limited to $0 \le x \le 25$. The electron diffusion coefficient is $D_n = 25 \text{cm}^2/\text{s}$ and the electron mobility is $\mu_n = 960 \text{cm}^2/\text{Vs}$. The total current density through the semiconductor is constant and equal to $J_n = 40A/cm^2$. The electron current density has both drift and diffusion current density components. Determine the electric field as a function of x which must exist in the semiconductor. (6)

QUESTION THREE (25 marks)

- (a) In Silicon, the hole concentration is given by $p(x) = 10^{15} exp(-x/L_p)$ for $x \ge 0$ and the electron concentration is given by $n(x) = 5 \times 10^{14} exp(x/L_n)$ for $x \le 0$. The values of L_p and L_n are 5×10^{-4} cm and 10^{-3} cm respectively. The hole and electron diffusion coefficient are $10cm^2/s$ and $25cm^{2/s}$ respectively. The total current density is defined as the sum of the hole diffusion current density at x = 0 and the electron diffusion current density at x = 0. Calculate the total current density. (4)
- (b) Consider the ideal long silicon pn junction shown in the figure below at T=300K. The n-region is doped with 10¹⁶ donor atoms per cm³ and the p-region is doped with 5×10^{16} acceptor atoms per cm³. The minority carrier lifetimes are $\tau_{n0} = 0.05 \mu s$ and $\tau_{p0} = 0.01 \mu s$. The minority carrier diffusion coefficients are $D_n = 23 cm^2/s$ and $D_p = 8cm^2/s$. The forward-bias voltage is $V_a = 0.610$ V.

Calculate

- (i) the excess hole concentration as a function of x for $x \ge 0$ (5)(3)
- (ii) the hole diffusion current density at $x = 3 \times 10^{-4}$ cm
- (c) Consider a uniformly doped silicon pn junction with doping concentrations $N_a =$ $5 \times 10^{17} \text{ cm}^{-3}$ and $N_d = 10^{17} \text{ cm}^{-3}$.
 - (i) Calculate V_{bi} at T = 300 K. (2)The junction has a cross-sectional area of 10^{-4} cm² and has an applied reverse-bias voltage of $V_R = 5$ V. Calculate
- (ii) the depletion region width W. (4)• (iii) E_{max} (2)(iv) the total junction capacitance. (2)
- (d) A Schottky diode is formed by depositing Au on n-type GaAs doped at $N_d =$ 5×10^{16} cm⁻³, T=300K. Determine the forward-bias voltage required to obtain $J_n =$ 5A/cm². Assume $\phi_{Bn} = 0.867V$. (3)

QUESTION FOUR (25 marks)

- (a) A silicon pn junction in thermal equilibrium at T=300K is doped such that
 - $E_F E_{Fi} = 0.365 \ eV$ in the n region and $E_{Fi} E_F = 0.33 \ eV$ in the p region.
 - (i) Sketch the energy band diagram for the pn junction. (3)
 - (ii) Find the impurity concentration in each region.
 - (iii) Determine V_{bi} . (3)
- (b) Consider a uniformly doped silicon pn junction at T=300K. At zero bias, 20% of the total space charge region is in the p region. The built in potential barrier is $V_{bi} = 0.71V$. Determine
 - (i) N_a (5)

 (ii) N_d (2)

 (iii) X_n (3)

 (iv) X_p (2)

 (v) $|E_{max}|$ (3)

(4)

USEFUL INFORMATION AND EQUATIONS

$$\begin{split} I_n &= q\mu_n nE + qD_n \frac{dn}{dx} \\ J_p(x_n) &= -eD_p \frac{d(\delta p_n(x))}{dx} \Big|_{x=x_n} \quad J_p(x_n) = \frac{eD_p p_{eb}}{L_p} \Big[\exp\Big(\frac{eV_s}{kT}\Big) - 1 \Big] \qquad n_n = n_1 \exp\Big[\frac{E_e - E_{eb}}{kT}\Big] \\ J_n(-x_p) &= eD_n \frac{d(\delta n_p(x))}{dx} \Big|_{x=x_n} \quad J_e(-x_p) = \frac{eD_n n_{p0}}{L_n} \Big[\exp\Big(\frac{eV_s}{kT}\Big) - 1 \Big] \qquad p_2 = n_1 \exp\Big[\frac{-(E_F - E_{eb})}{kT}\Big] \\ \delta n_e(x) &= n_p(x) - n_{x0} = n_{p0} \Big[\exp\Big(\frac{eV_a}{kT}\Big) - 1 \Big] \exp\Big(\frac{x_p - x}{L_n}\Big) \qquad E_{eb} - E_{wlogene} = \frac{3}{4} kT \ln\Big(\frac{m_p^*}{m_n^*}\Big) \\ \delta p_n(x) &= p_n(x) - p_{eb} = p_{eb} \Big[\exp\Big(\frac{eV_a}{kT}\Big) - 1 \Big] \exp\Big(\frac{x_n - x}{L_p}\Big) \qquad \sigma \approx e\mu_p p = e\mu_n (N_e - N_e) \\ \delta p_n(x) &= p_n(x) - p_{eb} = p_{eb} \Big[\exp\Big(\frac{eV_a}{kT}\Big) - 1 \Big] \exp\Big(\frac{x_n - x}{L_p}\Big) \qquad \sigma \approx e\mu_p p = e\mu_p (N_e - N_e) \\ L_2^2 &= D_p \tau_{p0} - L_2^2 = D_n \tau_{n0} - J \exp\Big(\frac{-E_s}{kT}\Big) \exp\Big(\frac{eV_a}{kT}\Big) - J_s = en_1^2 \Big(\frac{1}{N_x} \sqrt{\frac{D_e}{\tau_{ab}}} + \frac{1}{N_x} \sqrt{\frac{D_p}{\tau_{p0}}}\Big) \\ V_{N} &= \frac{kT}{e} \ln\Big(\frac{N_s N_s}{n_1^2}\Big) = V_e \ln\Big(\frac{N_s N_s}{n_1^2}\Big) \qquad E_{max} = -\Big\{\frac{2e(V_{hc} + V_{ab})}{e} \Big(\frac{N_s N_s}{N_a + N_d}\Big)\Big\}^{1/2} - A^* = \frac{4\pi em_n^* k^2}{h^2} \\ W &= \Big\{\frac{2e_s(V_{bi} + V_R)}{e} \Big[\frac{N_a + N_d}{N_a N_d}\Big]\Big\}^{1/2} - C^* = \Big\{\frac{2e_s N_s N_s}{2(V_{bi} + V_R)(N_a + N_d)}\Big\}^{1/2} - J = J_{sT} \Big[\exp\Big(\frac{eV_s}{kT}\Big) - 1\Big] \\ x_p &= \Big(\frac{2e_s V_{bi}}{e} \Big[\frac{N_a}{N_a}\Big]\Big]^{1/2} - \Phi_{Be} = (\phi_m - \chi) \qquad J_{sT} = A^* T^2 \exp\Big(\frac{-e\phi_{Be}}{kT}\Big) \\ Typical mobility values at T = 300 K and low doping concentrations \qquad I_D = \frac{W\mu_n C_{ex}}{L} (V_{cD} - V_T)V_{DS} \\ \end{array}$$

Typical mobility values at T300 K and low doping concentrations

angan sa panagan gana sa panangan sa pa	$\mu_{ m a}$ (cm²/V-s)	μ_{0} (cm ² /Y-5)	
Silicon	1350	480	
Gallium arsenide	8500	400	
Germanium	3900	1900	

Commonly accepted	values of n_i at $T = 300$ K
$=2.5267$ of >2.825 mm $^{-2.526}$ mm $^{-1.526}$ mm $^{-1.526}$ mm $^{-1.526}$ mm $^{-1.526}$ mm $^{-1.526}$ mm $^{-1.526}$	$(X,Y_{1},Y_{2},Y$
Silicon	$n_i = 1.5 \times 10^{10} \mathrm{cm}^{-3}$

Gallium arsenide $n_i = 1.8 \times 10^6$ cm	5
Germanium $n_i = 2.4 \times 10^{10}$ cm	1-3
And a star with an analysis and an and a star and a star and a star and a star a star and a star a star a star	

Electron affinity of some semiconductors

Electron affinity, A	
4.13	
4.01	
4.07	
3.5	

 $V_{p0} = \frac{ea^2 N_{q}}{2\epsilon_s}$

Work functions of some elements	
---------------------------------	--

*

Element	Work function. ϕ_m	
Ag. silver	4.26	
Al, aluminum	4.28	
Au. gold	5.1	
Cr. chromium	4.5	
Mo, molybdenum	4.6	
Ni, nickel	5.15	
Pd. palladium	5.12	
Pt, platinum	5.65	
Ti, titanium	4,33	
W, tungsten	4.55	

PHYSICAL CONSTANTS

.

Physical constants	
Avogadro's number	$N_{\rm A} = 6.02 \times 10^{-23}$
-	atoms per gram
	molecular weight
Boltzmann's constant	$k = 1.38 \times 10^{-23} \text{J/K}$
	$= 8.62 \times 10^{-5} \mathrm{eV/K}$
Electronic charge	$e = 1.60 imes 10^{-19} \mathrm{C}$
(magnitude)	
Free electron rest mass	$m_0 = 9.11 imes 10^{-31} { m kg}$
Permeability of free space	$oldsymbol{\mu}_{ m 0}=4oldsymbol{\pi} imes10^{-7}$ H/m
Permittivity of free space	$\epsilon_{ m o}=8.85 imes10^{-14}$ F/cm
,	$= 8.85 \times 10^{-12}$ F/m
Planck's constant	$h = 6.625 imes 10^{-34}$ J-s
	$= 4.135 \times 10^{-15} \mathrm{eV}$ -s
	$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \mathrm{J}$ -s
	2π
Proton rest mass	$M = 1.67 imes 10^{-27} \mathrm{kg}$
Speed of light in vacuum	$c = 2.998 \times 10^{10} \mathrm{cm/s}$
Thermal voltage ($T = 300 \text{ K}$)	$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
	kT = 0.0259 eV

•

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	$5.0 imes 10^{22}$	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{10}	$4.7 imes 10^{17}$	$1.04 imes 10^{ m rg}$
Effective density of states in valence band, $N_{\rm p}$ (cm ⁻³)	1.04×10^{19}	$7.0 imes 10^{18}$	$6.0 imes 10^{18}$
Intrinsic carrier concentration (cm ⁻³)	$1.5 imes 10^{10}$	$1.8 imes10^{6}$	2.4×10^{13}
Mobility (cm ² /V-s)		1	
Electron, μ_{σ}	1350	8500	3900
Hole, μ_r	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_{i}^{*} = 0.19$		0.082
Holes	$m_{lb}^* = 0.16$	0.082	0.044
	$m_{hh}^* = 0.49$	0.45	0.28
Density of states effective mass	210		
Electrons $\left(\frac{m_{da}^{*}}{m_{w}}\right)$	1.08	0.067	0.55
Holes $\left(\frac{m_{dp}^{*}}{m_{o}}\right)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\left(\frac{m_{ee}^{*}}{m_{o}}\right)$	0.26	0.067	0.12
Holes $\left(\frac{m_{er}^*}{m_e}\right)$	0.37	0.34	0.21

Silicon, gallium arsenide, and germanium properties (T = 300 K)