UNIVERSITY OF SWAZILAND
 FACULTY OF SCIENCE \& ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2017

TITLE OF PAPER:	ELECTROMAGNETIC FIELDS II
COURSE CODE:	EE441
TIME ALLOWED:	

INSTRUCTIONS:

1. Answer all four (4) questions
2. Each question carries 25 marks.
3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

A 2.4 GHz generator with series impedance $\mathrm{Z}_{\mathrm{g}}=10 \Omega$ and voltage source given by

$$
\begin{equation*}
v_{g}(t)=10 \sin \left(\omega t+45^{\circ}\right) \tag{V}
\end{equation*}
$$

is connected to a load $\mathrm{Z}_{\mathrm{L}}=(100+\mathrm{j} 100) \Omega$ through a $50-\Omega, 41.35-\mathrm{cm}$ long lossless transmission line as shown in Figure Q1. The phase velocity u_{p} of the line is 0.8 c where $c=3 \times 10^{8}$ which is the velocity of light in a vacuum. Find
a) The phase constant β,
b) The reflection coefficient Γ,
c) The input impedance $Z_{i n}$.
d) The incident voltage amplitude $V_{0}^{+}=\left(\frac{\hat{V}_{g} V_{i n}}{Z_{g}+Z_{i n}}\right)\left(\frac{1}{e^{j \beta l}+e^{-j \beta l}}\right)$, and
e) The phase voltage $\tilde{V}(\mathrm{~d})$.

Figure 01

QUESTION 2

a) Define the quality factor of a cavity resonance.
b) What happens at the Brewster angle for a given polarization?
c) When is a wave said to be linearly polarized, and briefly explain how a wave can be linearly polarized?
d) The electric field of an electromagnetic wave propagating in air is given by $E(z, t)=\widehat{x} 4 \cos (\omega t-2 z)+\widehat{y} 3 \sin (\omega t-2 z)(\mathrm{v} / \mathrm{m})$.
Find $\hat{H}(z)$.

QUESTION 3

A load impedance $Z_{L}=20-j 40 \Omega$ is connected to a $50-\Omega, 100 \mathrm{MHz}$ transmission line. Insert a shunt element to eliminate reflections towards the sending of the line. Use a Smith chart to locate the possible insert location (d_{1} and d_{2}) in wavelengths, and length l_{1} and l_{2} of shorted stubs. Note: Two possible solutions exist that's why d_{1} and d_{2}.

OUESTION 4

An inductor is formed by winding $\mathrm{N}=100$ turns of a thin conducting wire into circular loop of radius $a=10 \mathrm{~cm}$. The inductor loop is in the $x-y$ plane with its center at the origin, and connected to a resistor R, as shown in Figure Q4.

1) In the presence of a magnetic field $B=(\hat{y} 0.5+\hat{\mathbf{z}} 4) \cos 10^{3} t$ find
a) The magnetic flux linking a single turn of inductor,
b) The transformer emf,
c) The polarity of $V_{e m f}^{t r}$ at $t=0$,
d) The induced current in the circuit for $\mathrm{R}=500 \Omega$, and Hint: The wire resistance is very small compared to R.
II) Find $V_{\text {emf }}^{t r}$ if $B=0.5(\hat{y}+\widehat{x} 1.5) \sin 10^{3} t$

Figure 04

