UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2017

TITLE OF PAPER:	ELECTROMAGNETIC FIELDS II]
COURSE CODE:	EE441	
TIME ALLOWED:	THREE HOURS	

INSTRUCTIONS:

- 1. Answer all four (4) questions
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

A 2.4 GHz generator with series impedance $Z_g = 10 \Omega$ and voltage source given by

 $v_a(t) = 10\sin(\omega t + 45^0) \qquad (V)$

is connected to a load $Z_L = (100 + j100) \Omega$ through a 50- Ω , 41.35-cm long lossless transmission line as shown in <u>Figure Q1</u>. The phase velocity u_p of the line is 0.8c where $c = 3 \times 10^8$ which is the velocity of light in a vacuum. Find

- a) The phase constant β , (4 marks)
- b) The reflection coefficient Γ ,
- c) The input impedance Z_{in},

(4 marks) (6 marks)

- d) The incident voltage amplitude $V_0^+ = \left(\frac{\hat{V}_g V_{in}}{Z_g + Z_{in}}\right) \left(\frac{1}{e^{j\beta l} + e^{-j\beta l}}\right)$, and (6 marks)
- e) The phase voltage $\tilde{V}(d)$.

QUESTION 2

- a) Define the quality factor of a cavity resonance. (2 marks)
- b) What happens at the Brewster angle for a given polarization? (3 marks)
- c) When is a wave said to be linearly polarized, and briefly explain how a wave can be linearly polarized? (5 marks)
- d) The electric field of an electromagnetic wave propagating in air is given by $E(z,t) = \hat{x}4\cos(\omega t - 2z) + \hat{y}3\sin(\omega t - 2z)$ (v/m). Find $\hat{H}(z)$. (15 marks)

QUESTION 3

A load impedance $Z_L = 20 - j40 \Omega$ is connected to a 50- Ω , 100 MHz transmission line. Insert a shunt element to eliminate reflections towards the sending of the line. Use a Smith chart to locate the possible insert location (d_1 and d_2) in wavelengths, and length l_1 and l_2 of d_1 and d_2 shorted stubs. Note: Two possible solutions exist that's why d_1 and d_2 . (25 marks)

QUESTION 4

An inductor is formed by winding N = 100 turns of a thin conducting wire into circular loop of radius a =10 cm. The inductor loop is in the x-y plane with its center at the origin, and connected to a resistor R, as shown in Figure Q4.

I) In the presence of a magnetic field $B = (\hat{y}0.5 + \hat{z}4)\cos 10^3 t$ find

- a) The magnetic flux linking a single turn of inductor,
- b) The transformer emf,
- c) The polarity of V_{emf}^{tr} at t =0,
- d) The induced current in the circuit for R=500 Ω, and Hint: *The wire resistance is very small compared to R.*
- II) Find V_{emf}^{tr} if $B = 0.5(\hat{y} + \hat{x}1.5)sin10^3 t$

(4 marks)

(8 marks)

(7 marks)

(2 marks)

(4 marks)

Figure Q4