University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016

Title of Paper	:	Introduction to Digital Signal Processing
Course Number	:	EE443
Time Allowed	:	3 hrs
Instructions	: 1. 2. 3.	Answer any four (4) questions Each question carries 25 marks Useful information is attached at the end of the question paper

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of eight (7) pages

Question 1

- (a) Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4, and given $f_s = 100$ Hz, T=0.01 seconds, compute the amplitude spectrum, phase spectrum and power spectrum using the Hamming Window function. [20]
- (b) Find the inverse z-transform of the following function [5]:

$$X(z) = \frac{5z}{z^2 - z + 1}$$

Question 2

(a) Given the filter

$$H(z) = \frac{1 - 0.9z^{-1} - 0.1z^{-2}}{1 + 0.3z^{-1} - 0.04z^{-2}},$$

Realize H(z) and develop the difference equation using the following form

- (i) Cascade (series) form via first order-sections [5]
 (ii) Parallel form via first order-sections [5]
- (b) Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4. Evaluate its DFT X(k) using the decimation-in-time FFT method. [5]

(c) Find
$$x(n)$$
 if $X(z) = \frac{z^2}{(z-1)(z-0.5)^2}$ [10]

Question 3

(a) Convert the following transfer function into its difference equation. [3]

$$H(z) = \frac{Z^2 - 0.5z + 0.36}{Z^2}$$

(b) Design a bandpass FIR filter with following specifications: [10]

Lower stopband = 0-500 Hz Passband = 1600- 2300 Hz Upper stopband = 3500 - 4000 Hz Stopband attenuation = 50 dB Passband ripple = 0.05 dB Sampling rate = 8000 Hz

State all the coefficients.

- (c) Describe the basic mechanism of circular buffering for a buffer having eight data samples. [5]
- (d) What is Gibb's effect in FIR digital filters? How does it originate and how to remedy this problem? [4]
- (e) State the advantage of the floating point processor. [3]

Question 4

Design a digital bandpass Chebyshev filter with the following specifications:

- Center frequency of 2.5 kHz
- Passband bandwidth of 200 Hz, 0.5 dB ripple on passband
- Lower stop frequency of 1.5 kHz, upper stop frequency of 3.5 kHz
- Stopband attenuation of 10 dB
- Sampling frequency of 8000 Hz

Show all your work!

Question 5

Design a digital bandstop Butterworth filter with the following specifications:

- Center frequency of 2.5 kHz
- Passband width of 200 Hz and ripple of 3dB.
- Stopband width of 50Hz and attenuation of 10 dB
- Sampling frequency of 8000 Hz

Show all your work!

[25]

[25]

Table 1: Properties of z-transform

Property	Time Domain	z-Transform
Linearity Shift theorem Linear convolution	$ax_1(n) + bx_2(n) x(n-m) x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(n-k) x_2(k)$	$aZ(x_{1}(n)) + bZ(x_{2}(n))$ $z^{-m}X(z)$ $X_{1}(z)X_{2}(z)$

Χ,

Table 2: Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole: $\frac{R}{z-p} \qquad \qquad R = (z-p)\frac{X(z)}{z}\Big|_{z-p}$ Partial fraction with the first-order complex poles: $\frac{Az}{(z-P)} + \frac{A^*z}{(z-P^*)} \qquad \qquad A = (z-P)\frac{X(z)}{z}\Big|_{z-P}$ $P^* = \text{complex conjugate of } P$ $A^* = \text{complex conjugate of } A$ Partial fraction with *m*th-order real poles: $\frac{R_m}{z-p} + \frac{R_{m-1}}{z-p} + \dots + \frac{R_1}{z-p}$ $R_k = \frac{1}{z-p} \frac{d^{k-1}(z-p^{k-$

Table 3: 3 dB Butterworth lowpass prototype transfer functions ($\varepsilon = 1$)

n	$H_P(s)$
1 2 3 4 5	$\frac{\frac{1}{s+1}}{\frac{1}{s^2+1.4142s+1}}$ $\frac{\frac{1}{s^3+2s^2+2s+1}}{\frac{1}{s^4+2.6131s^3+3.4142s^2+2.6131s+1}}$ $\frac{1}{s^5+3.2361s^4+5.2361s^3+5.2361s^2+3.2361s+1}$ $\frac{1}{1}$
0	$s^{4}+3.8637s^{5}+7.4641s^{4}+9.1416s^{3}+7.4641s^{2}+3.8637s+1$

Table 4: Summary of ideal impulse responses for standard FIR filters.

Filter Type	Ideal Impulse Response h(n) (noncausal FIR coefficients)
Lowpass:	$h(n) = \begin{cases} \frac{\Omega_r}{\pi} & n = 0\\ \frac{\sin(\Omega_r n)}{n\pi} \text{ for } n \neq 0 & -M \le n \le M \end{cases}$
Highpass:	$h(n) = \begin{cases} \frac{\pi - \Omega_{\star}}{\pi} & n = 0\\ -\frac{\sin(\Omega_{\star} n)}{n\pi} \text{ for } n \neq 0 & -M \le n \le M \end{cases}$
Bandpass:	$h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi} & n = 0\\ \frac{\sin(\Omega_H n)}{n\pi} - \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
Bandstop;	$h(n) = \begin{cases} \frac{\pi - \Omega_H + \Omega_L}{\pi} & n = 0\\ -\frac{\sin(\Omega_H n)}{n\pi} + \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
Causal FIR filter coefficients	s: shifting $h(n)$ to the right by M samples.

Transfer function:

 $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{2M} z^{-2M}$ where $b_n = h(n - M), n = 0, 1, \dots, 2M$

Table 5: Chebyshev lowpass prototype transfer functions with 0.5 dB ripple ($\varepsilon = 0.3493$)

n	$H_P(s)$
1	$\frac{2.8628}{(+2.8628)}$
2	$\frac{1.4314}{s^2+1.4256s+1.5162}$
3	$\frac{0.7157}{s^3+1.2529s^2+1.5349s+0.7157}$
4	$\frac{0.3579}{(4+1.1974s^3+1.7169s^2+1.0255s+0.3791)}$
5	$\frac{0.1789}{s^5+1.1725s^4+1.9374s^3+1.3096s^2+0.7525s+0.1789}$
6	$\frac{0.0895}{s^6 + 1.1592s^5 + 2.1718s^4 + 1.5898s^3 + 1.1719s^2 + 0.4324s + 0.0948}$

Filter Type	Prototype Transformation
Lowpass	$\frac{s}{\omega_c}$, ω_c is the cutoff frequency
Highpass	$\frac{\omega_c}{s}$, ω_c is the cutoff frequency
Bandpass	$\frac{s^2+\omega_0^2}{sW},\omega_0=\sqrt{\omega_l\omega_h},W=\omega_h-\omega_l$
Bandstop	$\frac{sW}{s^2+\omega_0^2}, \omega_0 = \sqrt{\omega_l\omega_h}, W = \omega_h - \omega_l$

 Table 6: Analog lowpass prototype transformations

Table 6: Conversion from analog filter specifications to lowpass prototype specifications.

Analog Filter Specifications	Lowpass Prototype Specifications
Lowpass: ω_{ab} , ω_{as}	$v_p = 1, v_s = \omega_{as} / \omega_{ap}$
Highpass: ω_{ap}, ω_{as}	$v_p = 1, v_s = \omega_{ap}/\omega_{as}$
Bandpass: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}	$v_p = 1, v_s = \frac{\omega_{asb} - \omega_{ast}}{\omega_{asb} - \omega_{ast}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \ \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	and any car any
Bandstop: ω_{apl} , ω_{aph} , ω_{ash} , ω_{ash}	$v_p = 1, v_s = \frac{\omega_{ayh} - \omega_{ayt}}{\omega_{ayh} - \omega_{ayt}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	vuksk Ludy

 ω_{aps} passband frequency edge; ω_{ax} , stopband frequency edge; ω_{apl} , lower cutoff frequency in passband; ω_{aph} , upper cutoff frequency in passband; ω_{axl} , lower cutoff frequency in stopband; ω_{axh} , upper cutoff frequency in stopband; ω_{a} , geometric center frequency.

Line No.	$x(n), n \ge 0$	z-Transform $X(z)$	Region of Convergence
1	<i>x</i> (<i>n</i>)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
2	$\delta(n)$	1	z > 0
3	ai(n)	$\frac{az}{z-1}$	z > 1
4	$m_i(n)$	$\frac{z}{(z-1)^2}$	z > 1
5	$n^2u(n)$	$\frac{z(z+1)}{(z-1)^3}$	$\langle z \rangle > 1$
6	$a^n u(n)$	$\frac{z}{z-a}$	iz(> (a)
7	$e^{-nu}u(n)$	$\frac{z}{(z-e^{-a})}$	$ z > e^{-a}$
8	$na^n u(n)$	$\frac{az}{(z-a)^2}$	z > a
9	$\sin(\sigma n)u(n)$	$\frac{z\sin(a)}{z^2 - 2z\cos(a) + 1}$	z > 1
10	$\cos(an)u(n)$	$\frac{z[z-\cos{(a)}]}{z^2-2z\cos{(a)}+1}$	z > 1
11	$a^n \sin{(bn)u(n)}$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$u^n \cos{(bn)u(n)}$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-an}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$
14	$e^{-un}\cos(bn)u(n)$	$\frac{z[z - e^{-a}\cos(b)]}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	iz > e−"
15	$2[A : P^{n} \cos(n\theta + \phi)u(n)$ where P and A are complex constants defined by $P = [P][\theta, A = A]$	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	

The Z-transform