UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING
 DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING
 MAIN EXAMINATION
 DECEMBER 2016

TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING

COURSE CODE: EEE251/EE251
DURATION: 3 HOURS

INSTRUCTIONS:

1. There are five (5) questions in this paper. Answer question 1 and any other three (3) questions.
2. Each question carries equal marks.
3. Start each question in a new page.

This paper should not be opened until permission has been given by the invigilator.
This paper contains six (6) pages including this page.

Question 1 [25 Marks]

a. Describe a rheostat and potentiometer. Give two examples where they can be used.
b. Using simple circuit diagrams illustrate how each can be connected in a circuit.
[4 Marks]
c. An experimenter building the voltage circuits shown in Figure Q.1c predicted that varying the resistance $\mathbf{R} \mathbf{2}$ and $\mathbf{R 3}$ should give the results shown on the graphs below the circuits.
i. Make pairs of each voltage divider circuit (a) or (b) with a corresponding graph (c) or (d). Give reasons for your pairs. Further determine what the axis variables \mathbf{X} and \mathbf{Y} should be.
[6 Marks]
ii. Define the labeling of the graphs by working out, from the circuit variables, expressions for the voltages labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E}.
[10 Marks]

Figure Q.1c.
d. Determine the ratio of powers dissipated in two resistors, each having the same length and each made of copper wire of circular cross section, but one having a diameter twice that of the other, and each being connected across the same voltage.

Question 2 [25 Marks]

a. In Figure Q.2a, use wye-delta or delta-wye transformation to evaluate the following; i. The current supplied by the source, i.e. $I_{\text {s }}$.
ii. The Voltage across R_{4}.

Figure Q.2a.
b. In Figure Q.2b, use the mesh current analysis technique to find;
i. The loop and branch currents.
ii. The voltage across 1Ω and 4Ω resistor.

Figure Q.2b.

Question 3 [25 Marks]

a. Consider the circuit shown in Figure Q.3a.
i. Find the Thevenin equivalent of the circuit across the points \mathbf{a} and \mathbf{b}.
[7 Marks]
ii. If a variable resistor were connected between the points \mathbf{a} and \mathbf{b}, what will be the maximum power dissipated in the variable resistor?

Figure Q.3a.
b. Use nodal analysis to find the voltage through the 4Ω resistor shown in Figure Q.3b.
[7 Marks]

Figure Q.3b.
c. The circuit shown in Figure Q.3c has two current sources one of which is a voltage dependent source. Find the following:
i. The voltage across the independent current source.
[5 Marks]
ii. The power dissipated in each resistor.
[2 Marks]
iii. The total power supplied by the sources.
[2 Marks]

Figure Q.3c.

Question 4 [25 Marks]

a. A 4Ω resistor in series with a 7.96 mH inductor is connected across a 230 V 50 Hz source. Determine:
i. The total impedance.
[2 Marks]
ii. The input current
iii. The voltages across the resistor and the inductor.
[3 Marks]
iv. Draw a phasor diagram showing the current and the voltages. [4 Marks]
v. The power factor.
[2 Marks]
vi. The input power.
[2 Marks]
b. Given that an inductor draws 5 A of current at 230 V 50 Hz , find the inductive reactance and the inductance.
c. Given that a capacitor draws 2 A of current at 230 V 50 Hz . Find the capacitive reactance and the capacitance.

Question 5. [25 Marks]

a. A circuit consisting of a coil of inductance $150 \mu \mathrm{H}$ and resistance 5Ω, in series with a capacitance of 22 nF is connected to a variable frequency supply which has a constant voltage 20 V . Determine:
i. The resonance frequency of the circuit. [2 Marks]
ii. The current in the circuit at resonance. [2 Marks]
iii. The voltages across the inductance and the capacitor at resonance. [3 Marks]
iv. The Q-factor of the circuit [2 Marks]
b. A coil of inductance 0.1 H is connected across a $50 \mathrm{~V}, 60 \mathrm{~Hz}$ supply, in parallel with it is a $60 \mu \mathrm{~F}$ capacitor which is also in parallel with a 30Ω resistor as shown in Figure Q.5b. Determine:
i. The total impedance of the circuit.
[4 Marks]
ii. The branch currents
iii. The total Active Power taken from the supply.
[3 Marks]
iv. The total reactive power supplied.
v. The apparent power supplied.
vi. The power factor of the combined circuits stating whether it is leading or lagging.

Figure Q.5b.

End of Paper

